The three-dimensional weakly nonlinear Rayleigh-Taylor instability in spherical geometry

被引:4
|
作者
Zhang, J. [1 ]
Wang, L. F. [1 ,2 ,3 ]
Wu, J. F. [1 ]
Ye, W. H. [1 ,2 ,3 ]
Zou, S. Y. [1 ]
Ding, Y. K. [1 ,2 ,3 ]
Zhang, W. Y. [1 ,2 ,3 ]
He, X. T. [1 ,2 ,3 ]
机构
[1] Inst Appl Phys & Computat Math, Beijing 100094, Peoples R China
[2] Peking Univ, Ctr Appl Phys & Technol, HEDPS, Beijing 100871, Peoples R China
[3] Peking Univ, Coll Engn, Beijing 100871, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
INERTIAL-CONFINEMENT FUSION; IGNITION; SIMULATIONS; STABILITY; GROWTH; FLOWS; STAGE;
D O I
10.1063/1.5128644
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The fully three-dimensional Rayleigh-Taylor instability in spherical geometry is investigated in the weakly nonlinear regime. A theoretical model is developed for incompressible fluid and ideal Euler equations. Third-order solutions are derived for interface perturbations of spherical harmonic modes, Yn, m. Interface evolution, fundamental mode growth, the generated spectrum, and bubble growth are determined. It is found that the fastest growing modes satisfy the relation m similar or equal to(n+1)/2. The generated spectra demonstrate the feedback of mode coupling, which greatly depends on the azimuthal mode numbers. The growth factors are nearly the same for bubbles at different latitudes and bubbles with initially round cross-sectional perturbation shapes grow faster.
引用
收藏
页数:8
相关论文
共 50 条
  • [11] Three-dimensional bubbles in Rayleigh-Taylor instability
    Oparin, A
    Abarzhi, S
    PHYSICS OF FLUIDS, 1999, 11 (11) : 3306 - 3311
  • [12] Weakly nonlinear incompressible Rayleigh-Taylor instability in spherical and planar geometries
    Zhang, J.
    Wang, L. F.
    Ye, W. H.
    Guo, H. Y.
    Wu, J. F.
    Ding, Y. K.
    Zhang, W. Y.
    He, X. T.
    PHYSICS OF PLASMAS, 2018, 25 (02)
  • [13] Harmonic growth of spherical Rayleigh-Taylor instability in weakly nonlinear regime
    Liu, Wanhai
    Chen, Yulian
    Yu, Changping
    Li, Xinliang
    PHYSICS OF PLASMAS, 2015, 22 (11)
  • [14] Three-dimensional simulations and analysis of the nonlinear stage of the Rayleigh-Taylor instability
    Hecht, J
    Ofer, D
    Alon, U
    Shvarts, D
    Orszag, SA
    McCrory, RL
    LASER AND PARTICLE BEAMS, 1995, 13 (03) : 423 - 440
  • [15] RAYLEIGH-TAYLOR INSTABILITY IN SPHERICAL GEOMETRY - REPLY
    GUPTA, NK
    LAWANDE, SV
    PHYSICAL REVIEW A, 1987, 36 (01): : 413 - 413
  • [16] RAYLEIGH-TAYLOR INSTABILITY IN SPHERICAL GEOMETRY - COMMENT
    MIKAELIAN, KO
    PHYSICAL REVIEW A, 1987, 36 (01): : 411 - 412
  • [17] Viscous Rayleigh-Taylor instability in spherical geometry
    Mikaelian, Karnig O.
    PHYSICAL REVIEW E, 2016, 93 (02)
  • [18] THREE-DIMENSIONAL RAYLEIGH-TAYLOR INSTABILITY. PART 1. WEAKLY NONLINEAR THEORY.
    Jacobs, J.W.
    Catton, I.
    Journal of Fluid Mechanics, 1988, 187 : 329 - 352
  • [19] Interface models for three-dimensional Rayleigh-Taylor instability
    Pandya, Gavin
    Shkoller, Steve
    JOURNAL OF FLUID MECHANICS, 2023, 959
  • [20] Numerical simulation of the three-dimensional Rayleigh-Taylor instability
    Lee, Hyun Geun
    Kim, Junseok
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2013, 66 (08) : 1466 - 1474