Determining the prediction limits of models and classifiers with applications for disruption prediction in JET

被引:6
|
作者
Murari, A. [1 ,2 ,3 ,12 ]
Peluso, E. [1 ,4 ]
Vega, J. [1 ,5 ,51 ]
Gelfusa, M. [1 ,4 ,84 ]
Lungaroni, M. [1 ,4 ]
Gaudio, P. [1 ,4 ,84 ]
Martinez, F. J. [1 ,5 ]
Abhangi, M. [39 ]
Abreu, P. [45 ]
Aftanas, M. [42 ]
Afzal, M. [8 ]
Aggarwal, K. M. [25 ]
Aho-Mantila, L. [99 ]
Ahonen, E. [6 ]
Aints, M. [95 ]
Airila, M. [99 ]
Albanese, R. [93 ]
Alegre, D. [51 ]
Alessi, E. [38 ]
Aleynikov, P. [47 ]
Alfier, A. [12 ]
Alkseev, A. [60 ]
Allan, P. [8 ]
Almaviva, S. [84 ]
Alonso, A. [51 ]
Alper, B. [8 ]
Alsworth, I. [8 ]
Alves, D. [45 ]
Ambrosino, G. [93 ]
Ambrosino, R. [94 ]
Amosov, V. [77 ]
Andersson, F. [16 ]
Andersson Sunden, E. [20 ]
Angelone, M. [79 ]
Anghel, A. [74 ]
Anghel, M. [73 ]
Angioni, C. [54 ]
Appel, L. [8 ]
Apruzzese, G. [79 ]
Arena, P. [26 ]
Ariola, M. [94 ]
Arnichand, H. [9 ]
Arnoux, G. [8 ]
Arshad, S. [35 ]
Ash, A. [8 ]
Asp, E. [20 ]
Asunta, O. [6 ]
Atanasiu, C. V. [74 ]
Austin, Y. [8 ]
Avotina, L. [92 ]
机构
[1] Culham Sci Ctr, JET, EUROfus Consortium, Abingdon OX14 3DB, Oxon, England
[2] Culham Sci Ctr, ITER Phys Dept, EUROfus Programme Management Unit, Abingdon OX14 3DB, Oxon, England
[3] Univ Padua, Consorzio RFX, Acciaierie Venete SpA, CNR,ENEA,INFN, Corso Stati Uniti 4, I-35127 Padua, Italy
[4] Univ Roma Tor Vergata, Via Politecn 1, I-00133 Rome, Italy
[5] CIEMAT, Lab Nacl Fus, Ave Complutense 40, E-28040 Madrid, Spain
[6] Aalto Univ, FIN-00076 Aalto, Finland
[7] BCS, Barcelona, Spain
[8] Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England
[9] IRFM, CEA, F-13108 St Paul Les Durance, France
[10] Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, Brazil
[11] Consorzio CREATE, I-80125 Naples, Italy
[12] Consorzio RFX, I-35127 Padua, Italy
[13] Daegu Univ, Gyongsan 712174, Gyeongbuk, South Korea
[14] Univ Carlos III Madrid, Dept Fis, Madrid 28911, Spain
[15] Univ Ghent, Dept Appl Phys, B-9000 Ghent, Belgium
[16] Chalmers Univ Technol, Dept Earth & Space Sci, SE-41296 Gothenburg, Sweden
[17] Univ Cagliari, Dept Elect & Elect Engn, I-09123 Cagliari, Italy
[18] Comenius Univ, Fac Math Phys & Informat, Dept Expt Phys, Bratislava 84248, Slovakia
[19] Univ Strathclyde, Dept Phys & Appl Phys, Glasgow G4 ONG, Lanark, Scotland
[20] Uppsala Univ, Dept Phys & Astron, SE-75120 Uppsala, Sweden
[21] Lund Univ, Dept Phys, SE-22100 Lund, Sweden
[22] KTH, SCI, Dept Phys, SE-10691 Stockholm, Sweden
[23] Univ Oxford, Dept Phys, Oxford OX1 2JD, England
[24] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England
[25] Queens Univ, Dept Pure & Appl Phys, Belfast BT7 1NN, Antrim, North Ireland
[26] Univ Catania, Dipartimento Ingn Elettr Elettr & Sistemi, I-95125 Catania, Italy
[27] Dublin City Univ, Dublin, Ireland
[28] CRPP, EPFL, CH-1015 Lausanne, Switzerland
[29] CNRS, UMR 7648, Ecole Polytech, F-91128 Palaiseau, France
[30] EUROfus Programme Management Unit, D-85748 Garching, Germany
[31] Culham Sci Ctr, EUROfus Programme Management Unit, Abingdon OX14 3DB, Oxon, England
[32] European Commiss, B-1049 Brussels, Belgium
[33] FOM Inst DIFFER, NL-3430 BE Nieuwegein, Netherlands
[34] Forsch Zentrum Julich GmbH, Inst Energie & Klimaforsch Plasmaphys, D-52425 Julich, Germany
[35] Fus Energy Joint Undertaking, Barcelona 08019, Spain
[36] KTH, EES, Fus Plasma Phys, SE-10044 Stockholm, Sweden
[37] Gen Atom, San Diego, CA 85608 USA
[38] IFP CNR, I-20125 Milan, Italy
[39] Inst Plasma Res, Gandhinagar 382428G, Gujarat, India
[40] Bulgarian Acad Sci, Inst Elect, BU-1784 Sofia, Bulgaria
[41] Inst Plasma Phys & Laser Microfus, PL-01497 Warsaw, Poland
[42] Inst Plasma Phys AS CR, Prague 182 00 8, Czech Republic
[43] Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Peoples R China
[44] Univ Sao Paulo, Inst Fis, BR-05508090 Sao Paulo, Brazil
[45] Univ Lisbon, Inst Super Tecn, Inst Plasmas & Fusao Nucl, Lisbon, Portugal
[46] Ioffe Phys Tech Inst, St Petersburg 194021, Russia
[47] ITER Org, F-13067 St Paul Les Durance, France
[48] Naka Fus Res Estab, Japan Atom Energy Agcy, Naka 3110913, Ibaraki, Japan
[49] Karlsruhe Inst Technol, D-76021 Karlsruhe, Germany
[50] Univ Nice Sophia Antipolis, Lab JA Dieudonne, F-06108 Nice 2, France
关键词
prediction factor; conditional entropy; predictability; disruptions; ELMs; sawteeth;
D O I
10.1088/0029-5515/57/1/016024
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Understanding the many aspects of tokamak physics requires the development of quite sophisticated models. Moreover, in the operation of the devices, prediction of the future evolution of discharges can be of crucial importance, particularly in the case of the prediction of disruptions, which can cause serious damage to various parts of the machine. The determination of the limits of predictability is therefore an important issue for modelling, classifying and forecasting. In all these cases, once a certain level of performance has been reached, the question typically arises as to whether all the information available in the data has been exploited, or whether there are still margins for improvement of the tools being developed. In this paper, a theoretical information approach is proposed to address this issue. The excellent properties of the developed indicator, called the prediction factor (PF), have been proved with the help of a series of numerical tests. Its application to some typical behaviour relating to macroscopic instabilities in tokamaks has shown very positive results. The prediction factor has also been used to assess the performance of disruption predictors running in real time in the JET system, including the one systematically deployed in the feedback loop for mitigation purposes. The main conclusion is that the most advanced predictors basically exploit all the information contained in the locked mode signal on which they are based. Therefore, qualitative improvements in disruption prediction performance in JET would need the processing of additional signals, probably profiles.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] On determining the prediction limits of mathematical models for time series
    Peluso, E.
    Murari, A.
    Gelfusa, M.
    Lungaroni, M.
    Talebzadeh, S.
    Gaudio, P.
    Abhangi, M.
    Abreu, P.
    Aftanas, M.
    Afzal, M.
    Aggarwal, K. M.
    Aho-Mantila, L.
    Ahonen, E.
    Aints, M.
    Airila, M.
    Albanese, R.
    Alegre, D.
    Alessi, E.
    Aleynikov, P.
    Alfier, A.
    Alkseev, A.
    Allan, P.
    Almaviva, S.
    Alonso, A.
    Alper, B.
    Alsworth, I.
    Alves, D.
    Ambrosino, G.
    Ambrosino, R.
    Amosov, V.
    Andersson, F.
    Andersson Sunden, E.
    Angelone, M.
    Anghel, A.
    Anghel, M.
    Angioni, C.
    Appel, L.
    Apruzzese, G.
    Arena, P.
    Ariola, M.
    Arnichand, H.
    Arnoux, G.
    Arshad, S.
    Ash, A.
    Asp, E.
    Asunta, O.
    Atanasiu, C. V.
    Austin, Y.
    Avotina, L.
    Axton, M. D.
    JOURNAL OF INSTRUMENTATION, 2016, 11
  • [2] A multidimensional linear model for disruption prediction in JET
    Ratta, G. A.
    Vega, J.
    Murari, A.
    FUSION ENGINEERING AND DESIGN, 2019, 146 : 2393 - 2396
  • [3] Feature extraction for improved disruption prediction analysis at JET
    Ratta, G. A.
    Vega, J.
    Murari, A.
    Johnson, M.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2008, 79 (10):
  • [4] Disruption Prediction on JET During the ILW Experimental Campaigns
    Moreno, R.
    Vega, J.
    Dormido-Canto, S.
    Pereira, A.
    Murari, A.
    Contributors, J. E. T.
    FUSION SCIENCE AND TECHNOLOGY, 2016, 69 (02) : 485 - 494
  • [5] Climate prediction: The limits of ocean models
    Stone, PH
    STATE OF THE PLANET: FRONTIERS AND CHALLENGES IN GEOPHYSICS, 2004, 150 : 259 - 267
  • [6] A locked mode indicator for disruption prediction on JET and ASDEX upgrade
    Sias, G.
    Cannas, B.
    Fanni, A.
    Murari, A.
    Pau, A.
    Kallenbach, A.
    Aguiam, D.
    Aho-Mantila, L.
    Angioni, C.
    Arden, N.
    Parra, R. Arredondo
    Asunta, O.
    de Baar, M.
    Balden, M.
    Behler, K.
    Bergmann, A.
    Bernardo, J.
    Bernert, M.
    Beurskens, M.
    Biancalani, A.
    Bilato, R.
    Birkenmeier, G.
    Bobkov, V.
    Bock, A.
    Bogomolov, A.
    Bolzonella, T.
    Boeswirth, B.
    Bottereau, C.
    Bottino, A.
    van den Brand, H.
    Brezinsek, S.
    Brida, D.
    Brochard, F.
    Bruhn, C.
    Buchanan, J.
    Buhler, A.
    Burckhart, A.
    Cambon-Silva, D.
    Camenen, Y.
    Carvalho, P.
    Carrasco, G.
    Cazzaniga, C.
    Carr, M.
    Carralero, D.
    Casali, L.
    Castaldo, C.
    Cavedon, M.
    Challis, C.
    Chankin, A.
    Chapman, I.
    FUSION ENGINEERING AND DESIGN, 2019, 138 : 254 - 266
  • [7] Support vector machines for disruption prediction and novelty detection at JET
    Cannas, B.
    Delogu, R. S.
    Fannia, A.
    Sonato, P.
    Zedda, M. K.
    FUSION ENGINEERING AND DESIGN, 2007, 82 (5-14) : 1124 - 1130
  • [8] Limits of epidemic prediction using SIR models
    Melikechi, Omar
    Young, Alexander L.
    Tang, Tao
    Bowman, Trevor
    Dunson, David
    Johndrow, James
    JOURNAL OF MATHEMATICAL BIOLOGY, 2022, 85 (04)
  • [9] Limits of epidemic prediction using SIR models
    Omar Melikechi
    Alexander L. Young
    Tao Tang
    Trevor Bowman
    David Dunson
    James Johndrow
    Journal of Mathematical Biology, 2022, 85
  • [10] SAM: Pushing the Limits of Saliency Prediction Models
    Cornia, Marcella
    Baraldi, Lorenzo
    Serra, Giuseppe
    Cmcidara, Rita
    PROCEEDINGS 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2018, : 1971 - 1973