A vanishing conjecture: the GLn case

被引:0
|
作者
Chen, Tsao-Hsien [1 ]
机构
[1] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
来源
SELECTA MATHEMATICA-NEW SERIES | 2022年 / 28卷 / 01期
关键词
D O I
10.1007/s00029-021-00726-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article we propose a vanishing conjecture for a certain class of l-adic complexes on a reductive group G which can be regarded as a generalization of the acyclicity of the Artin-Schreier sheaf. We show that the vanishing conjecture contains, as a special case, a conjecture of Braverman and Kazhdan on the acyclicity of rho-Bessel sheaves (Braverman and Kazhdan in Geom Funct Anal I:237-278, 2002). Along the way, we introduce a certain class of Weyl group equivariant l-adic complexes on a maximal torus called central complexes and relate the category of central complexes to the Whittaker category on G. We prove the vanishing conjecture in the case when G = GL(n).
引用
收藏
页数:28
相关论文
共 50 条