A vanishing conjecture: the GLn case

被引:0
|
作者
Chen, Tsao-Hsien [1 ]
机构
[1] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
来源
SELECTA MATHEMATICA-NEW SERIES | 2022年 / 28卷 / 01期
关键词
D O I
10.1007/s00029-021-00726-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article we propose a vanishing conjecture for a certain class of l-adic complexes on a reductive group G which can be regarded as a generalization of the acyclicity of the Artin-Schreier sheaf. We show that the vanishing conjecture contains, as a special case, a conjecture of Braverman and Kazhdan on the acyclicity of rho-Bessel sheaves (Braverman and Kazhdan in Geom Funct Anal I:237-278, 2002). Along the way, we introduce a certain class of Weyl group equivariant l-adic complexes on a maximal torus called central complexes and relate the category of central complexes to the Whittaker category on G. We prove the vanishing conjecture in the case when G = GL(n).
引用
收藏
页数:28
相关论文
共 50 条
  • [1] HOWES CONJECTURE FOR GLN
    CLOZEL, L
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1983, 296 (03): : 141 - 143
  • [2] ON THE GENERALIZED VANISHING CONJECTURE
    Feng, Zhenzhen
    Sun, Xiaosong
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2019, 69 (04) : 1061 - 1068
  • [3] On the generalized vanishing conjecture
    Zhenzhen Feng
    Xiaosong Sun
    Czechoslovak Mathematical Journal, 2019, 69 : 1061 - 1068
  • [4] The P = W conjecture for GLn
    Maulik, Davesh
    Shen, Junliang
    ANNALS OF MATHEMATICS, 2024, 200 (02) : 529 - 556
  • [5] On the GLn-eigenvariety and a conjecture of Venkatesh
    Hansen, David
    Thorne, Jack A.
    SELECTA MATHEMATICA-NEW SERIES, 2017, 23 (02): : 1205 - 1234
  • [6] A VANISHING EXT-BRANCHING THEOREM FOR (GLn+1 (F), GLn (F))
    Chan, Kei Yuen
    Savin, Gordan
    DUKE MATHEMATICAL JOURNAL, 2021, 170 (10) : 2237 - 2261
  • [7] Generators for Group Homology and a Vanishing Conjecture
    Roberts, Joshua
    THAI JOURNAL OF MATHEMATICS, 2022, 20 (04): : 1461 - 1470
  • [8] A few remarks on the Generalized Vanishing Conjecture
    Michiel de Bondt
    Archiv der Mathematik, 2013, 100 : 533 - 538
  • [9] THE MASSEY VANISHING CONJECTURE FOR NUMBER FIELDS
    Harpaz, Yonathan
    Wittenberg, Olivier
    DUKE MATHEMATICAL JOURNAL, 2023, 172 (01) : 1 - 41
  • [10] Remarks on the non-vanishing conjecture
    Gongyo, Yoshinori
    ALGEBRAIC GEOMETRY IN EAST ASIA - TAIPEI 2011, 2015, 65 : 107 - 116