Discrete and mesoscopic regimes of finite-size wave turbulence

被引:39
|
作者
L'vov, V. S. [1 ]
Nazarenko, S. [2 ]
机构
[1] Weizmann Inst Sci, Dept Chem Phys, IL-76100 Rehovot, Israel
[2] Univ Warwick, Math Inst, Coventry CV4 7AL, W Midlands, England
来源
PHYSICAL REVIEW E | 2010年 / 82卷 / 05期
基金
美国国家科学基金会;
关键词
SURFACE; PROBABILITY; TRANSITION; AMPLITUDES; SPECTRUM; GRAVITY;
D O I
10.1103/PhysRevE.82.056322
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Bounding volume results in discreteness of eigenmodes in wave systems. This leads to a depletion or complete loss of wave resonances (three-wave, four-wave, etc.), which has a strong effect on wave turbulence (WT) i.e., on the statistical behavior of broadband sets of weakly nonlinear waves. This paper describes three different regimes of WT realizable for different levels of the wave excitations: discrete, mesoscopic and kinetic WT. Discrete WT comprises chaotic dynamics of interacting wave "clusters" consisting of discrete (often finite) number of connected resonant wave triads (or quarters). Kinetic WT refers to the infinite-box theory, described by well-known wave-kinetic equations. Mesoscopic WT is a regime in which either the discrete and the kinetic evolutions alternate or when none of these two types is purely realized. We argue that in mesoscopic systems the wave spectrum experiences a sandpile behavior. Importantly, the mesoscopic regime is realized for a broad range of wave amplitudes which typically spans over several orders on magnitude, and not just for a particular intermediate level.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Finite-size effect on the resistive state in a mesoscopic type-II superconducting stripe
    Berdiyorov, G. R.
    Elmurodov, A. K.
    Peeters, F. M.
    Vodolazov, D. Y.
    PHYSICAL REVIEW B, 2009, 79 (17)
  • [32] Wave resistance for capillary gravity waves: Finite-size effects
    Benzaquen, M.
    Chevy, F.
    Raphael, E.
    EPL, 2011, 96 (03)
  • [33] Wave chaos in quantum billiards with a small but finite-size scatterer
    Shigehara, T
    Cheon, T
    PHYSICAL REVIEW E, 1996, 54 (02) : 1321 - 1331
  • [34] Finite-size spin-wave theory of a collinear antiferromagnet
    Capriotti, L
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2003, 17 (27): : 4819 - 4829
  • [35] Synchronization of finite-size particles by a traveling wave in a cylindrical flow
    Melnikov, D. E.
    Pushkin, D. O.
    Shevtsova, V. M.
    PHYSICS OF FLUIDS, 2013, 25 (09)
  • [36] Finite-size topology
    Cook, Ashley M.
    Nielsen, Anne E. B.
    PHYSICAL REVIEW B, 2023, 108 (04)
  • [37] Discrete Magnetic Breathers and Their Stability in a Finite-Size Monoaxial Chiral Helimagnet
    Bostrem, I. G.
    Sinitsyn, Vl E.
    Mokronosov, M., V
    Ovchinnikov, A. S.
    Kishine, J.
    Ekomasov, E. G.
    Fakhretdinov, M., I
    IEEE TRANSACTIONS ON MAGNETICS, 2022, 58 (02)
  • [38] Direct Verification of the Kinetic Description of Wave Turbulence for Finite-Size Systems Dominated by Interactions among Groups of Six Waves
    Banks, J. W.
    Buckmaster, T.
    Korotkevich, A. O.
    Kovacic, G.
    Shatah, J.
    PHYSICAL REVIEW LETTERS, 2022, 129 (03)
  • [39] Effect of gravity on the development of homogeneous shear turbulence laden with finite-size particles
    Tanaka, Mitsuru
    JOURNAL OF TURBULENCE, 2017, 18 (12): : 1144 - 1179
  • [40] The decay of isotropic turbulence carrying non-spherical finite-size particles
    Schneiders, Lennart
    Froehlich, Konstantin
    Meinke, Matthias
    Schroeder, Wolfgang
    JOURNAL OF FLUID MECHANICS, 2019, 875 : 520 - 542