Host-induced gene silencing of multiple pathogenic factors of Sclerotinia sclerotiorum confers resistance to Sclerotinia rot in Brassica napus

被引:26
|
作者
Wu, Jian [1 ]
Yin, Shengliang [1 ]
Lin, Li [1 ]
Liu, Dongxiao [1 ]
Ren, Sichao [1 ]
Zhang, Wenjing [1 ]
Meng, Wencheng [1 ]
Chen, Peipei [1 ]
Sun, Qinfu [2 ]
Fang, Yujie [2 ]
Wei, Cunxu [1 ]
Wang, Youping [1 ,2 ]
机构
[1] Yangzhou Univ, Key Lab Plant Funct Genom Minist Educ, Yangzhou, Peoples R China
[2] Yangzhou Univ, Jiangsu Key Lab Crop Genom & Mol Breeding, Yangzhou, Peoples R China
来源
CROP JOURNAL | 2022年 / 10卷 / 03期
关键词
Sclerotinia sclerotiorum; Brassica napus; SIGS; HIGS; RNAi; VERTICILLIUM WILT; OXALIC-ACID; STEM ROT; RNAI; WHEAT; STRATEGY; MUTANTS; ENZYMES; CLONING;
D O I
10.1016/j.cj.2021.08.007
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Sclerotinia sclerotiorum is generally considered one of the most economically damaging pathogens in oil-seed rape (Brassica napus). Breeding for Sclerotinia resistance is challenging, as no immune germplasm available in B. napus. It is desirable to develop new breeding strategies. In the present study, host-induced gene silencing (HIGS), developed based on RNA interference (RNAi), was applied to protect B. napus from S. sclerotiorum infection. Three pathogenicity genes, the endo-polygalacturonase gene (SsPG1), cellobiohydrolase gene (SsCBH), and oxaloacetate acetylhydrolase gene (SsOAH1), were chosen as HIGS targets. Co-incubation of synthesized double-stranded RNAs (dsRNAs) with S. sclerotiorum in liq-uid medium significantly reduced the transcript levels of the target genes. Application to plant surfaces of dsRNA targeting the three genes conferred effective protection against S. sclerotiorum. Stable transgenic B. napus plants expressing small interfering RNAs with sequence identity to SsPG1, SsCBH, and SsOAH1 were generated. HIGS transgenic B. napus prevented the expression of S. sclerotiorum target genes, slowed pathogenicity-factor accumulation, impeded fungal growth, and suppressed appressorium formation, thereby conferring resistance to S. sclerotiorum. Simultaneous silencing of SsPG1, SsCBH, and SsOAH1 by stable expression of a chimeric hairpin RNAi construct in B. napus led to enhanced protection phenotypes (with disease lesion size reduced by 36.8%-43.7%). We conclude that HIGS of pathogenic-factor genes of S. sclerotiorum is a promising strategy for controlling Sclerotinia rot in oilseed rape.(c) 2021 Crop Science Society of China and Institute of Crop Science, CAAS. Production and hosting by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:661 / 671
页数:11
相关论文
共 50 条
  • [31] Resistance to a highly aggressive isolate of Sclerotinia sclerotiorum in a Brassica napus diversity set
    Taylor, A.
    Coventry, E.
    Jones, J. E.
    Clarkson, J. P.
    PLANT PATHOLOGY, 2015, 64 (04) : 932 - 940
  • [32] Integration analysis of quantitative trait loci for resistance to Sclerotinia sclerotiorum in Brassica napus
    Li, Jiqiang
    Zhao, Zunkang
    Hayward, Alice
    Cheng, Hongyu
    Fu, Donghui
    EUPHYTICA, 2015, 205 (02) : 483 - 489
  • [33] Improvement of Sclerotinia sclerotiorum resistance in Brassica napus by using B-oleracea
    Ding, Yijuan
    Mei, Jiaqin
    Li, Qinfei
    Liu, Yao
    Wan, Huafang
    Wang, Lei
    Becker, Heiko C.
    Qian, Wei
    GENETIC RESOURCES AND CROP EVOLUTION, 2013, 60 (05) : 1615 - 1619
  • [34] Brassica B-genome resistance to stem rot (Sclerotinia sclerotiorum) in a doubled haploid population of Brassica napus x Brassica carinata
    Navabi, Z. K.
    Strelkov, S. E.
    Good, A. G.
    Thiagarajah, M. R.
    Rahman, M. H.
    CANADIAN JOURNAL OF PLANT PATHOLOGY, 2010, 32 (02) : 237 - 246
  • [36] Screening of Brassica napus and Phaseolus vulgaris for physiological resistance to Sclerotinia sclerotiorum.
    不详
    CANADIAN JOURNAL OF PLANT PATHOLOGY-REVUE CANADIENNE DE PHYTOPATHOLOGIE, 2005, 27 (01): : 166 - 166
  • [37] Patterns of differential gene expression in Brassica napus cultivars infected with Sclerotinia sclerotiorum
    Zhao, Jianwei
    Buchwaldt, Lone
    Rimmer, Samuel Roger
    Sharpe, Andrew
    McGregor, Linda
    Bekkaoui, Diana
    Hegedus, Dwayne
    MOLECULAR PLANT PATHOLOGY, 2009, 10 (05) : 635 - 649
  • [38] Host induced gene silencing of Sclerotinia sclerotiorum effector genes for the control of white mold
    Maximiano, M. R.
    Santos, L. S.
    Santos, C.
    Aragao, F. J. L.
    Dias, S. C.
    Franco, O. L.
    Mehta, A.
    BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY, 2022, 40
  • [39] Identification of receptor-like proteins induced by Sclerotinia sclerotiorum in Brassica napus
    Li, Wei
    Lu, Junxing
    Yang, Chenghuizi
    Xia, Shitou
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [40] A plant defensin gene from Orychophragmus violaceus can improve Brassica napus' resistance to Sclerotinia sclerotiorum
    Wu, Jun
    Wu, Lin-tao
    Liu, Zhi-bin
    Qian, Lei
    Wang, Mao-hua
    Zhou, Li-rong
    Yang, Yi
    Li, Xu-feng
    AFRICAN JOURNAL OF BIOTECHNOLOGY, 2009, 8 (22): : 6101 - 6109