A counterexample to uniqueness of generalized characteristics in Hamilton-Jacobi theory

被引:4
|
作者
Stromberg, Thomas [1 ]
机构
[1] Lulea Univ Technol, Dept Math, SE-97187 Lulea, Sweden
关键词
Hamilton-Jacobi equation; Generalized characteristic; Propagation of singularities; EQUATIONS; SINGULARITIES;
D O I
10.1016/j.na.2010.12.029
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The notion of generalized characteristics plays a pivotal role in the study of propagation of singularities for Hamilton-Jacobi equations. This note gives an example of nonuniqueness of forward generalized characteristics emanating from a given point. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2758 / 2762
页数:5
相关论文
共 50 条
  • [31] Uniqueness of Viscosity Solutions of Stochastic Hamilton-Jacobi Equations
    Jinniao Qiu
    Wenning Wei
    Acta Mathematica Scientia, 2019, 39 : 857 - 873
  • [32] UNIQUENESS OF VISCOSITY SOLUTIONS OF STOCHASTIC HAMILTON-JACOBI EQUATIONS
    Qiu, Jinniao
    Wei, Wenning
    ACTA MATHEMATICA SCIENTIA, 2019, 39 (03) : 857 - 873
  • [33] Uniqueness and error analysis for Hamilton-Jacobi equations with discontinuities
    Deckelnick, K
    Elliott, CM
    INTERFACES AND FREE BOUNDARIES, 2004, 6 (03): : 329 - 349
  • [34] UNIQUENESS OF VISCOSITY SOLUTIONS OF STOCHASTIC HAMILTON-JACOBI EQUATIONS
    仇金鸟
    魏文宁
    Acta Mathematica Scientia, 2019, 39 (03) : 857 - 873
  • [35] UNIQUENESS OF VISCOSITY SOLUTIONS OF HAMILTON-JACOBI EQUATIONS REVISITED
    CRANDALL, MG
    ISHII, H
    LIONS, PL
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1987, 39 (04) : 581 - 607
  • [36] The research of the quantum Hamilton-Jacobi theory
    Lin, Chang
    Lin, Mai-mai
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2009, 14 (05) : 1958 - 1961
  • [37] HAMILTON-JACOBI THEORY WITH MIXED CONSTRAINTS
    BERGMANN, PG
    TRANSACTIONS OF THE NEW YORK ACADEMY OF SCIENCES, 1971, 33 (01): : 108 - &
  • [38] A HAMILTON-JACOBI THEORY ON POISSON MANIFOLDS
    de Leon, Manuel
    Martin de Diego, David
    Vaquero, Miguel
    JOURNAL OF GEOMETRIC MECHANICS, 2014, 6 (01): : 121 - 140
  • [39] Uniqueness of the viscosity solution of a constrained Hamilton-Jacobi equation
    Calvez, Vincent
    Lam, King-Yeung
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2020, 59 (05)
  • [40] Structural aspects of Hamilton-Jacobi theory
    Carinena, J. F.
    Gracia, X.
    Marmo, G.
    Martinez, E.
    Munoz-Lecanda, M. C.
    Roman-Roy, N.
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2016, 13 (02)