Underwater Superoleophobic and Salt-Tolerant Sodium Alginate/N-Succinyl Chitosan Composite Aerogel for Highly Efficient Oil-Water Separation

被引:46
|
作者
Wang, Cheng [1 ]
He, Guanghua [1 ]
Cao, Jilong [1 ]
Fan, Lihong [1 ]
Cai, Weiquan [2 ]
Yin, Yihua [1 ]
机构
[1] Wuhan Univ Technol, Sch Chem Chem Engn & Life Sci, Wuhan 430070, Peoples R China
[2] Guangzhou Univ, Sch Chem & Chem Engn, Guangzhou 510006, Peoples R China
基金
中国国家自然科学基金;
关键词
double cross-linked aerogel; oil-water separation; underwater superoleophobicity; salt tolerance; recyclable; OIL/WATER SEPARATION; NANOFIBROUS MEMBRANE; COATED MESH; SHALE GAS; FABRICATION; SUPERHYDROPHILICITY; PURIFICATION; TECHNOLOGY; HYDROGEL; ADHESION;
D O I
10.1021/acsapm.9b00908
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Materials for oil-water separation under harsh conditions that exhibit high separation efficiency, salt tolerance, and the capability of high-speed separation and reusability are in great demand. In this study, we introduce a series of sodium alginate (SA)/N-succinyl chitosan (NSCS) composite aerogels with outstanding mechanical strength, robust salt tolerance, and high oil-water separation efficiency. These aerogels were well designed and prepared through a combination of a freeze-drying method, ionic cross-linking, and chemical cross-linking. Due to their remarkable mechanical performance and good flexibility, the composite aerogels could achieve oil-water separation under various harsh conditions. The separation efficiency reached 99% owing to the outstanding underwater superoleophobicity and high-porosity structure of the aerogel. More importantly, the aerogels could preserve their high separation efficiency and underwater superoleophobicity after being soaked in a saturated NaCl solution for 30 days or after 30 separation cycles, which suggested their favorable stability under high-salinity conditions. These results indicated that SA/NSCS aerogels were qualified materials for oil-water separation, which gives us hope for their application in oil-water separation under harsh conditions.
引用
收藏
页码:1124 / 1133
页数:10
相关论文
共 50 条
  • [21] Mussel-inspired chitosan modified superhydrophilic and underwater superoleophobic cotton fabric for efficient oil/water separation
    Wang, Meng
    Peng, Min
    Zhu, Jiang
    Li, Yi-Dong
    Zeng, Jian-Bing
    CARBOHYDRATE POLYMERS, 2020, 244
  • [22] Highly Hydrophobic Cellulose Nanofiber/Polylactic Acid Hybrid Aerogel for Efficient Oil-Water Separation
    Li M.
    Xie H.
    Li S.
    Xie P.
    Zhang C.
    Wang Y.
    Liu H.
    Gaofenzi Cailiao Kexue Yu Gongcheng/Polymeric Materials Science and Engineering, 2022, 38 (08): : 104 - 112
  • [23] Dopamine-decorated lotus leaf-like PVDF/TiO2 membrane with underwater superoleophobic for highly efficient oil-water separation
    Sun, Fei
    Li, Ting-Ting
    Ren, Hai-Tao
    Shiu, Bing-Chiuan
    Peng, Hao-Kai
    Lin, Jia-Horng
    Lou, Ching-Wen
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2021, 147 : 788 - 797
  • [24] Super-elastic and highly hydrophobic/superoleophilic sodium alginate/cellulose aerogel for oil/water separation
    Jin Yang
    Yunfei Xia
    Peng Xu
    Beibei Chen
    Cellulose, 2018, 25 : 3533 - 3544
  • [25] Super-elastic and highly hydrophobic/superoleophilic sodium alginate/cellulose aerogel for oil/water separation
    Yang, Jin
    Xia, Yunfei
    Xu, Peng
    Chen, Beibei
    CELLULOSE, 2018, 25 (06) : 3533 - 3544
  • [26] Bio-inspired fabrication of superhydrophilic and underwater superoleophobic alumina membranes for highly efficient oil/water separation
    Zhou, Wenjin
    Zhou, Mingyang
    Zhang, Huapeng
    Tang, Hongyan
    JOURNAL OF COATINGS TECHNOLOGY AND RESEARCH, 2021, 18 (02) : 361 - 372
  • [27] Superhydrophilic-underwater superoleophobic ZnO-based coated mesh for highly efficient oil and water separation
    Li, Jian
    Yan, Long
    Li, Weijun
    Li, Jianping
    Zha, Fei
    Lei, Ziqiang
    MATERIALS LETTERS, 2015, 153 : 62 - 65
  • [28] Facile fabrication of underwater superoleophobic TiO2 coated mesh for highly efficient oil/water separation
    Li, Jian
    Yan, Long
    Hu, Wenfang
    Li, Dianming
    Zha, Fei
    Lei, Ziqiang
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2016, 489 : 441 - 446
  • [29] Facile fabrication of superhydrophilic and underwater superoleophobic nanofiber membranes for highly efficient separation of oil-in-water emulsion
    Obaid, M.
    Mohamed, Hend Omar
    Alayande, Abayomi Babatunde
    Kang, Yesol
    Ghaffour, Noreddine
    Kim, In S.
    SEPARATION AND PURIFICATION TECHNOLOGY, 2021, 272
  • [30] Underwater superoleophobic poly(vinylidene fluoride)/poly (N-isopropylacrylamide) membranes for highly efficient oil-in-water emulsion separation
    Zhu, Li-Jing
    Yang, Ming
    Wang, Gang
    Zeng, Zhi-Xiang
    Jia, Zheng-Feng
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2023, 656