Underwater Superoleophobic and Salt-Tolerant Sodium Alginate/N-Succinyl Chitosan Composite Aerogel for Highly Efficient Oil-Water Separation

被引:46
|
作者
Wang, Cheng [1 ]
He, Guanghua [1 ]
Cao, Jilong [1 ]
Fan, Lihong [1 ]
Cai, Weiquan [2 ]
Yin, Yihua [1 ]
机构
[1] Wuhan Univ Technol, Sch Chem Chem Engn & Life Sci, Wuhan 430070, Peoples R China
[2] Guangzhou Univ, Sch Chem & Chem Engn, Guangzhou 510006, Peoples R China
基金
中国国家自然科学基金;
关键词
double cross-linked aerogel; oil-water separation; underwater superoleophobicity; salt tolerance; recyclable; OIL/WATER SEPARATION; NANOFIBROUS MEMBRANE; COATED MESH; SHALE GAS; FABRICATION; SUPERHYDROPHILICITY; PURIFICATION; TECHNOLOGY; HYDROGEL; ADHESION;
D O I
10.1021/acsapm.9b00908
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Materials for oil-water separation under harsh conditions that exhibit high separation efficiency, salt tolerance, and the capability of high-speed separation and reusability are in great demand. In this study, we introduce a series of sodium alginate (SA)/N-succinyl chitosan (NSCS) composite aerogels with outstanding mechanical strength, robust salt tolerance, and high oil-water separation efficiency. These aerogels were well designed and prepared through a combination of a freeze-drying method, ionic cross-linking, and chemical cross-linking. Due to their remarkable mechanical performance and good flexibility, the composite aerogels could achieve oil-water separation under various harsh conditions. The separation efficiency reached 99% owing to the outstanding underwater superoleophobicity and high-porosity structure of the aerogel. More importantly, the aerogels could preserve their high separation efficiency and underwater superoleophobicity after being soaked in a saturated NaCl solution for 30 days or after 30 separation cycles, which suggested their favorable stability under high-salinity conditions. These results indicated that SA/NSCS aerogels were qualified materials for oil-water separation, which gives us hope for their application in oil-water separation under harsh conditions.
引用
收藏
页码:1124 / 1133
页数:10
相关论文
共 50 条
  • [1] A robust salt-tolerant superoleophobic chitosan/nanofibrillated cellulose aerogel for highly efficient oil/water separation
    Zhang, Hui
    Li, Yuqi
    Shi, Ronghui
    Chen, Lihui
    Fan, Mizi
    CARBOHYDRATE POLYMERS, 2018, 200 : 611 - 615
  • [2] A robust salt-tolerant superoleophobic aerogel inspired by seaweed for efficient oil-water separation in marine environments
    Li, Yuqi
    Zhang, Hui
    Fan, Mizi
    Zhuang, Jiandong
    Chen, Lihui
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (36) : 25394 - 25400
  • [3] A robust salt-tolerant superoleophobic alginate/graphene oxide aerogel for efficient oil/water separation in marine environments
    Yuqi Li
    Hui Zhang
    Mizi Fan
    Peitao Zheng
    Jiandong Zhuang
    Lihui Chen
    Scientific Reports, 7
  • [4] A robust salt-tolerant superoleophobic alginate/graphene oxide aerogel for efficient oil/water separation in marine environments
    Li, Yuqi
    Zhang, Hui
    Fan, Mizi
    Zheng, Peitao
    Zhuang, Jiandong
    Chen, Lihui
    SCIENTIFIC REPORTS, 2017, 7
  • [5] Superhydrophilic and underwater superoleophobic mesh coating for efficient oil-water separation
    Li, Jianhua
    Cheng, Hei Man
    Chan, Ching Ying
    Ng, Pui Fai
    Chen, Lei
    Fei, Bin
    Xin, John H.
    RSC ADVANCES, 2015, 5 (64) : 51537 - 51541
  • [6] Biocompatible, hydrophobic and resilience graphene/chitosan composite aerogel for efficient oil-water separation
    Hu, Jiang
    Zhu, Jundong
    Ge, Shengzhuo
    Jiang, Chongwen
    Guo, Tianyu
    Peng, Tangping
    Huang, Tao
    Xie, Le
    SURFACE & COATINGS TECHNOLOGY, 2020, 385
  • [7] Superhydrophobic sodium alginate/cellulose aerogel for dye adsorption and oil-water separation
    Li, Huimin
    Huang, Jingyi
    Shen, Shen
    Meng, Chaoran
    Wang, Hongbo
    Fu, Jiajia
    CELLULOSE, 2023, 30 (11) : 7157 - 7175
  • [8] Multifunctional superhydrophilic/underwater superoleophobic lignin-based polyurethane foam for highly efficient oil-water separation and water purification
    Chen, Jing
    Wu, Jialong
    Zhong, Yinyan
    Ma, Xiaozhen
    Lv, Wanrong
    Zhao, Honglong
    Zhu, Jin
    Yan, Ning
    SEPARATION AND PURIFICATION TECHNOLOGY, 2023, 311
  • [9] Fish-Scale-Inspired Underwater Superoleophobic Nanosurface for Efficient Oil-Water Separation and Manipulation
    Bhat, Irfan Majeed
    Ara, Tabassum
    Lone, Saifullah
    ACS APPLIED ENGINEERING MATERIALS, 2024, 2 (10): : 2414 - 2424
  • [10] Ultradurable underwater superoleophobic surfaces obtained by vapor-synthesized layered polymer nanocoatings for highly efficient oil-water separation
    Feng, Jingang
    Sun, Min
    Ye, Yumin
    JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (29) : 14990 - 14995