Modeling saltwater upcoming with artificial neural networks

被引:0
|
作者
Coppola, Emery [1 ]
Szdarovsky, Ferenc [1 ]
McIane, Charles [1 ]
Pulton, Mary [1 ]
Magelky, Robin [1 ]
机构
[1] NOAH LLC, Lawrenceville, NJ 08648 USA
关键词
artificial neural networks; saltwater intrusion; saltwater upconing; groundwater management; groundwater protection;
D O I
暂无
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
Salt-water upcoming and intrusion into freshwater groundwater systems can result in serious water quality problems, affecting potable supplies in coastal areas around the world. In this study, artificial neural networks (ANN) were developed to accurately predict highly time-variable specific conductance values in a real-world unconfined coastal aquifer. Unlike physical-based models, which require hydrologic parameter inputs, such as horizontal and vertical hydraulic conductivities and porosity, ANNs can "learn" system behavior from easily measurable variables. In this study, the ANN input predictor variables were the initial specific conductance (a measure of dissolved ions) measured at a monitor well, total precipitation, mean daily temperature, and total pumping extraction. The ANNs predicted conductance at a single monitoring well located near a high capacity municipal-supply well over time periods ranging from 30 days to several years. Model accuracy was compared against measured/interpolated values and predictions made with linear regression (I-R), and in general, achieved excellent prediction accuracy. The ANNs were also used to conduct a sensitivity analysis that quantified the importance of each of the four predictor variables on final conductance values, providing valuable insights into the dynamics of the system. The results demonstrate that the ANNs technology can serve as a powerful and accurate prediction and management tool, minimizing degradation of ground-water quality to the extent possible by identifying appropriate pumping policies under variable groundwater system and weather conditions.
引用
收藏
页码:3 / 8
页数:6
相关论文
共 50 条
  • [21] Cutting force modeling using artificial neural networks
    J Mater Process Technol, (344-349):
  • [22] Modeling Visual Impairments with Artificial Neural Networks: a Review
    Schiatti, Lucia
    Gori, Monica
    Schrimpf, Martin
    Cappagli, Giulia
    Morelli, Federica
    Signorini, Sabrina
    Katz, Boris
    Barbu, Andrei
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS, ICCVW, 2023, : 1979 - 1991
  • [23] Modeling and prediction of chaotic systems with artificial neural networks
    Woolley, Jonathan W.
    Agarwal, P. K.
    Baker, John
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2010, 63 (08) : 989 - 1004
  • [24] Advances in Artificial Neural Networks for Electromagnetic Parameterized Modeling
    Zhang, Qi-Jun
    Feng, Feng
    Na, Weicong
    2021 13TH GLOBAL SYMPOSIUM ON MILLIMETER-WAVES & TERAHERTZ (GSMM), 2021,
  • [25] Modeling the teacher job satisfaction by artificial neural networks
    Seok, Bang Won
    Wee, Kuk-hoan
    Park, Ju-young
    Anil Kumar, D.
    Reddy, N. S.
    SOFT COMPUTING, 2021, 25 (17) : 11803 - 11815
  • [26] Wastewater Pollutants Modeling Using Artificial Neural Networks
    Al Saleh, Hadeel Ali
    JOURNAL OF ECOLOGICAL ENGINEERING, 2021, 22 (07): : 35 - 45
  • [27] Correction to: Modeling Axonal Plasticity in Artificial Neural Networks
    James Ryland
    Neural Processing Letters, 2021, 53 : 3825 - 3827
  • [28] Modeling of fuel consumption using artificial neural networks
    WITASZEK K.
    Diagnostyka, 2020, 21 (04): : 103 - 113
  • [29] Modeling of an industrial drying process by artificial neural networks
    Assidjjo, E.
    Yao, B.
    Kisselmina, K.
    Amane, D.
    BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING, 2008, 25 (03) : 515 - 522
  • [30] Modeling Prosopagnosia Using Dynamic Artificial Neural Networks
    Vandermeulen, Robyn
    Morissette, Laurence
    Chartier, Sylvain
    2011 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2011, : 2074 - 2079