Modeling saltwater upcoming with artificial neural networks

被引:0
|
作者
Coppola, Emery [1 ]
Szdarovsky, Ferenc [1 ]
McIane, Charles [1 ]
Pulton, Mary [1 ]
Magelky, Robin [1 ]
机构
[1] NOAH LLC, Lawrenceville, NJ 08648 USA
关键词
artificial neural networks; saltwater intrusion; saltwater upconing; groundwater management; groundwater protection;
D O I
暂无
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
Salt-water upcoming and intrusion into freshwater groundwater systems can result in serious water quality problems, affecting potable supplies in coastal areas around the world. In this study, artificial neural networks (ANN) were developed to accurately predict highly time-variable specific conductance values in a real-world unconfined coastal aquifer. Unlike physical-based models, which require hydrologic parameter inputs, such as horizontal and vertical hydraulic conductivities and porosity, ANNs can "learn" system behavior from easily measurable variables. In this study, the ANN input predictor variables were the initial specific conductance (a measure of dissolved ions) measured at a monitor well, total precipitation, mean daily temperature, and total pumping extraction. The ANNs predicted conductance at a single monitoring well located near a high capacity municipal-supply well over time periods ranging from 30 days to several years. Model accuracy was compared against measured/interpolated values and predictions made with linear regression (I-R), and in general, achieved excellent prediction accuracy. The ANNs were also used to conduct a sensitivity analysis that quantified the importance of each of the four predictor variables on final conductance values, providing valuable insights into the dynamics of the system. The results demonstrate that the ANNs technology can serve as a powerful and accurate prediction and management tool, minimizing degradation of ground-water quality to the extent possible by identifying appropriate pumping policies under variable groundwater system and weather conditions.
引用
收藏
页码:3 / 8
页数:6
相关论文
共 50 条
  • [1] COMPARTMENTAL MODELING WITH ARTIFICIAL NEURAL NETWORKS
    COOMBER, CJ
    NEURAL PROCESSING LETTERS, 1995, 2 (01) : 13 - 18
  • [2] Artificial neural networks approximation of density dependent saltwater intrusion process in coastal aquifers
    Bhattacharjya, Rajib Kumar
    Datta, Bithin
    Satish, Mysore G.
    JOURNAL OF HYDROLOGIC ENGINEERING, 2007, 12 (03) : 273 - 282
  • [3] MODELING AND CONTROL BY ARTIFICIAL NEURAL NETWORKS IN BIOTECHNOLOGY
    KURTANJEK, Z
    COMPUTERS & CHEMICAL ENGINEERING, 1994, 18 : S627 - S631
  • [4] Modeling relational responding with artificial neural networks
    Mendoza, Janelle
    Ghirlanda, Stefano
    BEHAVIOURAL PROCESSES, 2023, 205
  • [5] RELATIVE HUMIDITY MODELING WITH ARTIFICIAL NEURAL NETWORKS
    Kuzugudenli, E.
    APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH, 2018, 16 (04): : 5227 - 5235
  • [6] Modeling flexibility using artificial neural networks
    Förderer K.
    Ahrens M.
    Bao K.
    Mauser I.
    Schmeck H.
    Energy Informatics, 1 (Suppl 1) : 73 - 91
  • [7] Artificial neural networks for modeling chemosensory reception
    Malaka, Rainer
    Ragg, Thomas
    Artificial Neural Networks in Engineering - Proceedings (ANNIE'94), 1994, 4 : 573 - 578
  • [8] Statistical Compact Modeling With Artificial Neural Networks
    Dai, Wu
    Li, Yu
    Rong, Zhao
    Peng, Baokang
    Zhang, Lining
    Wang, Runsheng
    Huang, Ru
    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2023, 42 (12) : 5156 - 5160
  • [9] Modeling of eucalyptus productivity with artificial neural networks
    Sampaio de Freitas, Eliane Cristina
    de Paiva, Haroldo Nogueira
    Lima Neves, Julio Cesar
    Marcatti, Gustavo Eduardo
    Leite, Helio Garcia
    INDUSTRIAL CROPS AND PRODUCTS, 2020, 146
  • [10] Modeling Axonal Plasticity in Artificial Neural Networks
    James Ryland
    Neural Processing Letters, 2021, 53 : 1119 - 1146