Expansion complexity and linear complexity of sequences over finite fields

被引:19
|
作者
Merai, Laszlo [1 ]
Niederreiter, Harald [1 ]
Winterhof, Arne [1 ]
机构
[1] Austrian Acad Sci, Johann Radon Inst Computat & Appl Math, Altenbergerstr 69, A-4040 Linz, Austria
基金
奥地利科学基金会;
关键词
Expansion complexity; Linear complexity; Pseudorandom sequences; Binomial coefficients; Finite fields; Cryptography;
D O I
10.1007/s12095-016-0189-2
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The linear complexity is a measure for the unpredictability of a sequence over a finite field and thus for its suitability in cryptography. In 2012, Diem introduced a new figure of merit for cryptographic sequences called expansion complexity. We study the relationship between linear complexity and expansion complexity. In particular, we show that for purely periodic sequences both figures of merit provide essentially the same quality test for a sufficiently long part of the sequence. However, if we study shorter parts of the period or nonperiodic sequences, then we can show, roughly speaking, that the expansion complexity provides a stronger test. We demonstrate this by analyzing a sequence of binomial coefficients modulo p. Finally, we establish a probabilistic result on the behavior of the expansion complexity of random sequences over a finite field.
引用
收藏
页码:501 / 509
页数:9
相关论文
共 50 条
  • [41] On linear complexity of Kronecker sequences
    Wang, QL
    Hu, L
    Dai, ZD
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2003, E86A (11) : 2853 - 2859
  • [42] LINEAR COMPLEXITY OF TRANSFORMED SEQUENCES
    FELL, HJ
    LECTURE NOTES IN COMPUTER SCIENCE, 1991, 514 : 205 - 214
  • [43] Linear complexity of Kronecker sequences
    Karkkainen, KHA
    1998 IEEE 5TH INTERNATIONAL SYMPOSIUM ON SPREAD SPECTRUM TECHNIQUES AND APPLICATIONS - PROCEEDINGS, VOLS 1-3, 1998, : 51 - 55
  • [44] On the linear complexity for multidimensional sequences
    Gomez-Perez, Domingo
    Sha, Min
    Tirkel, Andrew
    JOURNAL OF COMPLEXITY, 2018, 49 : 46 - 55
  • [45] Linear complexity of polylinear sequences
    Kurakin, V.L.
    Discrete Mathematics and Applications, 2001, 11 (01): : 1 - 51
  • [46] On linear complexity of sequences over GF(2n)
    Youssef, AM
    Gong, G
    THEORETICAL COMPUTER SCIENCE, 2006, 352 (1-3) : 288 - 292
  • [47] On the lower bound of the linear complexity over FP of Sidelnikov sequences
    Garaev, Moubariz Z.
    Luca, Florian
    Shparlinski, Igor E.
    Winterhof, Arne
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (07) : 3299 - 3304
  • [48] Sequences of linear arithmetical complexity
    Frid, AE
    THEORETICAL COMPUTER SCIENCE, 2005, 339 (01) : 68 - 87
  • [49] LINEAR COMPLEXITY AND RANDOM SEQUENCES
    RUEPPEL, RA
    LECTURE NOTES IN COMPUTER SCIENCE, 1986, 219 : 167 - 188
  • [50] Linear complexity of recurrent sequences
    Radiotekhnika, 1997, (02): : 72 - 77