The Use of Artificial Intelligence in the Evaluation of Knee Pathology

被引:18
|
作者
Garwood, Elisabeth R. [1 ,2 ]
Tai, Ryan [1 ,2 ]
Joshi, Ganesh [1 ,2 ]
Watts, George J. [1 ,2 ]
机构
[1] Univ Massachusetts, Mem Med Ctr, Dept Radiol, Div Musculoskeletal Imaging & Intervent, Worcester, MA 01655 USA
[2] Univ Massachusetts, Med Sch, 55 Lake Ave North, Worcester, MA 01655 USA
关键词
artificial intelligence; magnetic resonance imaging; deep learning; knee; ANTERIOR CRUCIATE LIGAMENT; MENISCAL TEARS; OSTEOARTHRITIS; DIAGNOSIS; ARTHRITIS; INJURIES;
D O I
10.1055/s-0039-3400264
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Artificial intelligence (AI) holds the potential to revolutionize the field of radiology by increasing the efficiency and accuracy of both interpretive and noninterpretive tasks. We have only just begun to explore AI applications in the diagnostic evaluation of knee pathology. Experimental algorithms have already been developed that can assess the severity of knee osteoarthritis from radiographs, detect and classify cartilage lesions, meniscal tears, and ligament tears on magnetic resonance imaging, provide automatic quantitative assessment of tendon healing, detect fractures on radiographs, and predict those at highest risk for recurrent bone tumors. This article reviews and summarizes the most current literature.
引用
收藏
页码:21 / 29
页数:9
相关论文
共 50 条
  • [21] Artificial intelligence in kidney transplant pathology
    Buelow, Roman David
    Lan, Yu-Chia
    Amann, Kerstin
    Boor, Peter
    PATHOLOGIE, 2024, 45 (04): : 277 - 283
  • [22] Generative Artificial Intelligence in Anatomic Pathology
    Brodsky, Victor
    Ullah, Ehsan
    Bychkov, Andrey
    Song, Andrew H.
    Walk, Eric E.
    Louis, Peter
    Rasool, Ghulam
    Singh, Rajendra S.
    Mahmood, Faisal
    Bui, Marilyn M.
    V. Parwani, Anil
    ARCHIVES OF PATHOLOGY & LABORATORY MEDICINE, 2025, 149 (04) : 298 - 318
  • [23] Democratizing Artificial Intelligence in Anatomic Pathology
    Flotte, Thomas J.
    Derauf, Stephanie A.
    Byrd, Rachel K.
    Kroneman, Trynda N.
    Bell, Debra A.
    Stetzik, Lucas
    Lee, Seung-Yi
    Samiei, Alireza
    Hart, Steven N.
    Garcia, Joaquin J.
    Beamer, Gillian
    Westerling-Bui, Thomas
    ARCHIVES OF PATHOLOGY & LABORATORY MEDICINE, 2025, 149 (01) : 55 - 59
  • [24] Application of Artificial Intelligence in Shoulder Pathology
    Cheng, Cong
    Liang, Xinzhi
    Guo, Dong
    Xie, Denghui
    DIAGNOSTICS, 2024, 14 (11)
  • [25] Pathology training in the age of artificial intelligence
    Arora, Ananya
    Arora, Anmol
    JOURNAL OF CLINICAL PATHOLOGY, 2021, 74 (02) : 73 - 75
  • [26] Artificial intelligence for digital and computational pathology
    Andrew H. Song
    Guillaume Jaume
    Drew F. K. Williamson
    Ming Y. Lu
    Anurag Vaidya
    Tiffany R. Miller
    Faisal Mahmood
    Nature Reviews Bioengineering, 2023, 1 (12): : 930 - 949
  • [27] Artificial intelligence for biomarkers in cancer pathology
    Kather, Jakob Nikolas
    JOURNAL OF PATHOLOGY, 2024, 264 : S52 - S52
  • [28] Artificial Intelligence in the Pathology of Gastric Cancer
    Choi, Sangjoon
    Kim, Seokhwi
    JOURNAL OF GASTRIC CANCER, 2023, 23 (03) : 410 - 427
  • [29] Artificial Intelligence Advances in Transplant Pathology
    Rahman, Md Arafatur
    Yilmaz, Ibrahim
    Albadri, Sam T.
    Salem, Fadi E.
    Dangott, Bryan J.
    Taner, C. Burcin
    Nassar, Aziza
    Akkus, Zeynettin
    Alper, Cuneyt M.
    BIOENGINEERING-BASEL, 2023, 10 (09):
  • [30] Artificial intelligence applied to breast pathology
    Yousif, Mustafa
    van Diest, Paul J.
    Laurinavicius, Arvydas
    Rimm, David
    van der Laak, Jeroen
    Madabhushi, Anant
    Schnitt, Stuart
    Pantanowitz, Liron
    VIRCHOWS ARCHIV, 2022, 480 (01) : 191 - 209