The Use of Artificial Intelligence in the Evaluation of Knee Pathology

被引:18
|
作者
Garwood, Elisabeth R. [1 ,2 ]
Tai, Ryan [1 ,2 ]
Joshi, Ganesh [1 ,2 ]
Watts, George J. [1 ,2 ]
机构
[1] Univ Massachusetts, Mem Med Ctr, Dept Radiol, Div Musculoskeletal Imaging & Intervent, Worcester, MA 01655 USA
[2] Univ Massachusetts, Med Sch, 55 Lake Ave North, Worcester, MA 01655 USA
关键词
artificial intelligence; magnetic resonance imaging; deep learning; knee; ANTERIOR CRUCIATE LIGAMENT; MENISCAL TEARS; OSTEOARTHRITIS; DIAGNOSIS; ARTHRITIS; INJURIES;
D O I
10.1055/s-0039-3400264
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Artificial intelligence (AI) holds the potential to revolutionize the field of radiology by increasing the efficiency and accuracy of both interpretive and noninterpretive tasks. We have only just begun to explore AI applications in the diagnostic evaluation of knee pathology. Experimental algorithms have already been developed that can assess the severity of knee osteoarthritis from radiographs, detect and classify cartilage lesions, meniscal tears, and ligament tears on magnetic resonance imaging, provide automatic quantitative assessment of tendon healing, detect fractures on radiographs, and predict those at highest risk for recurrent bone tumors. This article reviews and summarizes the most current literature.
引用
收藏
页码:21 / 29
页数:9
相关论文
共 50 条
  • [1] Use of Artificial Intelligence Chatbots in Interpretation of Pathology Reports
    Steimetz, Eric
    Minkowitz, Jeremy
    Gabutan, Elmer C.
    Ngichabe, Joan
    Attia, Hagar
    Hershkop, Mordechai
    Ozay, Fatih
    Hanna, Matthew G.
    Gupta, Raavi
    JAMA NETWORK OPEN, 2024, 7 (05) : E2412767
  • [2] Artificial Intelligence in Pathology
    Cohen, Stanley
    Levenson, Richard
    Pantanowitz, Liron
    AMERICAN JOURNAL OF PATHOLOGY, 2021, 191 (10): : 1670 - 1672
  • [3] Artificial Intelligence in Pathology
    Foersch, Sebastian
    Klauschen, Frederick
    Hufnagl, Peter
    Roth, Wilfried
    DEUTSCHES ARZTEBLATT INTERNATIONAL, 2021, 118 (12): : 199 - +
  • [4] Artificial Intelligence in Pathology
    Chang, Hye Yoon
    Jung, Chan Kwon
    Woo, Junwoo Isaac
    Lee, Sanghun
    Cho, Joonyoung
    Kim, Sun Woo
    Kwak, Tae-Yeong
    JOURNAL OF PATHOLOGY AND TRANSLATIONAL MEDICINE, 2019, 53 (01) : 1 - 12
  • [5] The use of digital pathology and artificial intelligence in the assessment of multiple myeloma
    McCabe, M.
    Sheehan, K.
    Glavey, S.
    VIRCHOWS ARCHIV, 2022, 481 (SUPPL 1) : S79 - S79
  • [6] Results of the European Society of Toxicologic Pathology Survey on the Use of Artificial Intelligence in Toxicologic Pathology
    Palazzi, Xavier
    Barale-Thomas, Erio
    Bawa, Bhupinder
    Carter, Jonathan
    Janardhan, Kyathanahalli
    Marxfeld, Heike
    Nyska, Abraham
    Saravanan, Chandrassegar
    Schaudien, Dirk
    Schumacher, Vanessa L.
    Spaet, Robert H.
    Tangermann, Simone
    Turner, Oliver C.
    Vezzali, Enrico
    TOXICOLOGIC PATHOLOGY, 2023, 51 (04) : 216 - 224
  • [7] On the use of artificial intelligence techniques for students evaluation
    Oprea, Mihaela
    PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON VIRTUAL LEARNING, 2014, : 46 - 51
  • [8] Digital pathology and artificial intelligence
    Niazi, Muhammad Khalid Khan
    Parwani, Anil V.
    Gurcan, Metin N.
    LANCET ONCOLOGY, 2019, 20 (05): : E253 - E261
  • [9] Artificial intelligence and pathology data
    Durant, T.
    CLINICA CHIMICA ACTA, 2022, 530 : S462 - S462
  • [10] Artificial intelligence in diagnostic pathology
    Saba Shafi
    Anil V. Parwani
    Diagnostic Pathology, 18