Short crack propagation analysis and fatigue strength assessment of additively manufactured materials: An application to AISI 316L

被引:26
|
作者
Bergant, Marcos [1 ]
Werner, Tiago [2 ]
Madia, Mauro [2 ]
Yawny, Alejandro [1 ,3 ]
Zerbst, Uwe [2 ]
机构
[1] Univ Nacl Cuyo, Ctr Atom Bariloche CNEA, Inst Balseiro, Div Fis Met, RA-8400 San Carlos De Bariloche, Rio Negro, Argentina
[2] Bundesanstalt Mat Forsch & Prufung BAM, Div 9-4, D-12205 Berlin, Germany
[3] Consejo Nacl Invest Cient & Tecn, CONICET, Buenos Aires, DF, Argentina
关键词
Cyclic R-curve; Chapetti's and IBESS model; S-N curve; Kitagawa-Takahashi diagram; AM 316L stainless steel; CYCLIC R-CURVE; FRACTURE-MECHANICS; WELDED-JOINTS; THRESHOLD; BEHAVIOR; DEFECTS; STEEL; SENSITIVITY; PREDICTION; LIMIT;
D O I
10.1016/j.ijfatigue.2021.106396
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This paper presents the application of short crack propagation models based on the cyclic R-curve for assessing the fatigue strength of additively manufactured (AM) materials containing fabrication defects. Chapetti's and IBESS models were implemented in combination with Murakami's root area parameter, considering recently published data on laser powder bed fusion processed AISI 316L stainless steels. Estimated S-N curves and KitagawaTakahashi diagrams predict fairly well the experimental data, especially the origin of the failure from internal or surface defects. These results provide an indication that the methods based on the cyclic R-curve constitute suitable tools for fatigue behavior assessment of AM materials.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Micro milling of additively manufactured AISI 316L: impact of the layerwise microstructure on the process results
    Greco, Sebastian
    Kieren-Ehses, Sonja
    Kirsch, Benjamin
    Aurich, Jan C.
    International Journal of Advanced Manufacturing Technology, 2021, 112 (1-2): : 361 - 373
  • [32] High strain rate induced shear banding within additively manufactured AISI 316L
    Kuncicka, Lenka
    Kocich, Radim
    MATERIALS LETTERS, 2024, 363
  • [33] Micro milling of additively manufactured AISI 316L: impact of the layerwise microstructure on the process results
    Greco, Sebastian
    Kieren-Ehses, Sonja
    Kirsch, Benjamin
    Aurich, Jan C.
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2021, 112 (1-2): : 361 - 373
  • [34] Corrosion behavior of additively manufactured AISI 316L stainless steel under atmospheric conditions
    Helbert, Varvara
    Rioual, Stephane
    Le Bozec, Nathalie
    Thierry, Dominique
    MATERIALS AND CORROSION-WERKSTOFFE UND KORROSION, 2022, 73 (11): : 1833 - 1843
  • [35] Modelling of short fatigue crack growth in the case of the 316L
    Yahiaoui, Reda
    Saadi, Bachir Ait
    MECANIQUE & INDUSTRIES, 2010, 11 (05): : 379 - 384
  • [36] Short fatigue crack behaviour in 316L stainless steel
    Obrtlik, K
    Polak, J
    Hajek, M
    Vasek, A
    INTERNATIONAL JOURNAL OF FATIGUE, 1997, 19 (06) : 471 - 475
  • [37] Corrosion fatigue crack growth of laser additively-manufactured 316L stainless steel in high temperature water
    Lou, Xiaoyuan
    Othon, Michelle A.
    Rebak, Raul B.
    CORROSION SCIENCE, 2017, 127 : 120 - 130
  • [38] Fatigue crack growth in interstitially hardened AISI 316L stainless steel
    Hsu, J. -P.
    Wang, D.
    Kahn, H.
    Ernst, F.
    Michal, G. M.
    Heuer, A. H.
    INTERNATIONAL JOURNAL OF FATIGUE, 2013, 47 : 100 - 105
  • [39] Fatigue of additively manufactured 316L stainless steel: The influence of porosity and surface roughness
    Solberg, Klas
    Guan, Shuai
    Razavi, Nima
    Welo, Torgeir
    Chan, Kang Cheung
    Berto, Filippo
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2019, 42 (09) : 2043 - 2052
  • [40] Very High Cycle Fatigue Behavior of Additively Manufactured 316L Stainless Steel
    Voloskov, Boris
    Evlashin, Stanislav
    Dagesyan, Sarkis
    Abaimov, Sergey
    Akhatov, Iskander
    Sergeichev, Ivan
    MATERIALS, 2020, 13 (15)