Mathematical modeling of anatomical structures by means of spherical harmonics

被引:0
|
作者
Richter, D. [1 ]
Abdellaoui, S. [1 ,2 ]
Bekkaoui, F. [1 ,2 ]
Monescu, V. [1 ,3 ]
Strassmann, G. [2 ]
机构
[1] Univ Appl Sci Wiesbaden, Wiesbaden, Germany
[2] Univ Marburg, Marburg, Germany
[3] Univ Tran Silvania Brasov, Brasov, Romania
来源
2008 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, VOLS 1-4 | 2008年
关键词
spherical harmonics; tumor movement; lung tumor; inertia tensor; similarity index; 4D-CT data;
D O I
10.1109/ISBI.2008.4541084
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The mathematical description of moving anatomical structures is of increasing importance when dealing with tumor irradiation by particle beams. A mathematical description of the orientation of anatomical structures by principal inertia axes and of the shape by spherical harmonics is given. Structures of convex and concave shape are decomposed and reconstructed with index numbers L-max = 10. Conformity of decomposed and reconstructed shape is measured by a similarity index. For irradiation therapy the influence of a security margin is considered. No significant improvement of conformity was found by using different coordinate systems for decomposition and reconstruction.
引用
收藏
页码:668 / +
页数:2
相关论文
共 50 条
  • [41] Fractal Spherical Harmonics
    Navascues, M. A.
    INTERNATIONAL JOURNAL OF ANALYSIS, 2013,
  • [42] ON THE SYMMETRIES OF SPHERICAL HARMONICS
    MEYER, B
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1954, 6 (01): : 135 - 157
  • [43] The addition theorem for spherical harmonics and monopole harmonics
    Fung, MK
    CHINESE JOURNAL OF PHYSICS, 2002, 40 (05) : 490 - 495
  • [44] SYMMETRIES OF SPHERICAL HARMONICS
    DEMARIANUNESMENDES, R
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 204 (APR) : 161 - 178
  • [45] GENERALIZED SPHERICAL HARMONICS
    PROTTER, MH
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1946, 52 (07) : 616 - 616
  • [46] Expansions in Spherical Harmonics for the Modeling of Near-Field Coupling in EMC
    Breard, Arnaud
    Thi Quynh Van Hoang
    Alves, Mario Dos Santos
    Krahenbuhl, Laurent
    Voltaire, Christian
    Sartori, Carlos
    2015 ASIA-PACIFIC INTERNATIONAL SYMPOSIUM ON ELECTROMAGNETIC COMPATIBILITY (APEMC), 2015, : 482 - 485
  • [47] Spherical harmonics scaling
    Wang, Jiaping
    Xu, Kun
    Zhou, Kun
    Lin, Stephen
    Hu, Shimin
    Guo, Baining
    VISUAL COMPUTER, 2006, 22 (9-11): : 713 - 720
  • [48] ON COMPLEX SPHERICAL HARMONICS
    IKEDA, M
    PROGRESS OF THEORETICAL PHYSICS, 1964, 32 (01): : 178 - &
  • [49] A property of spherical harmonics
    Lewy, H
    AMERICAN JOURNAL OF MATHEMATICS, 1938, 60 : 555 - 560
  • [50] GENERALIZED SPHERICAL HARMONICS
    PROTTER, MH
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1948, 63 (MAR) : 314 - 341