A fractional order optimal 4D chaotic financial model with Mittag-Leffler law

被引:42
|
作者
Atangana, A. [1 ]
Bonyah, E. [2 ]
Elsadany, A. A. [3 ,4 ]
机构
[1] Univ Free State, Inst Groundwater Studies, ZA-9301 Bloemfontein, South Africa
[2] Univ Educ Winneba Kumasi Campus, Dept Math, Kumasi, Ghana
[3] Prince Sattam Bin Abdulaziz Univ, Coll Sci & Humanities Studies Al Kharj, Dept Math, Al Kharj, Saudi Arabia
[4] Suez Canal Univ, Dept Basic Sci, Fac Comp & Informat, Ismailia 41522, Egypt
关键词
Fractional optimal control; Euler-Lagrange optimality; Chaotic systems; Financial model; Mittag-Leffler function; DYNAMICS; EXISTENCE; EQUATION;
D O I
10.1016/j.cjph.2020.02.003
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, a fractional 4D chaotic financial model with optimal control is investigated. The fractional derivative used in this financial model is Atangana-Baleanu derivative. The existence and uniqueness conditions of solutions for the proposed model are derived based on Mittag-Leffler law. Optimal control is incorporated into the model to maximize output. The Adams-Moulton scheme of the Atangana-Baleanu derivative is utilized to obtain the numerical results which produce new attractors. Euler-Lagrange optimality conditions are determined for the fractional 4D chaotic financial model. The numerical results show that the memory factor has a great influences on the dynamics of the model.
引用
收藏
页码:38 / 53
页数:16
相关论文
共 50 条
  • [21] FRACTIONAL ORDER GEMINIVIRUS IMPRESSION IN CAPSICUM ANNUUM MODEL WITH MITTAG-LEFFLER KERNAL
    Sawangtong, Panumart
    Logeswari, K.
    Ravichandran, C.
    Nisar, Kottakkaran Sooppy
    Vijayaraj, V.
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2023, 31 (04)
  • [22] A fractional order Covid-19 epidemic model with Mittag-Leffler kernel
    Khan, Hasib
    Ibrahim, Muhammad
    Abdel-Aty, Abdel-Haleem
    Khashan, M. Motawi
    Khan, Farhat Ali
    Khan, Aziz
    CHAOS SOLITONS & FRACTALS, 2021, 148
  • [23] Modeling and analysis of fractional order Ebola virus model with Mittag-Leffler kernel
    Farman, Muhammad
    Akgul, Ali
    Abdeljawad, Thabet
    Naik, Parvaiz Ahmad
    Bukhari, Nabila
    Ahmad, Aqeel
    ALEXANDRIA ENGINEERING JOURNAL, 2022, 61 (03) : 2062 - 2073
  • [24] Analysis of the fractional polio model with the Mittag-Leffler kernels
    Iqbal, Muhammad Sajid
    Ahmed, Nauman
    Akgul, Ali
    Satti, Ammad Mehmood
    Iqbal, Zafar
    Raza, Ali
    Rafiq, Muhammad
    Anjum, Rukhshanda
    Zakarya, Mohammed
    Park, Choonkil
    ALEXANDRIA ENGINEERING JOURNAL, 2023, 64 : 957 - 967
  • [25] Synchronization of Fractional Stochastic Chaotic Systems via Mittag-Leffler Function
    Sathiyaraj, T.
    Feckan, Michal
    Wang, JinRong
    FRACTAL AND FRACTIONAL, 2022, 6 (04)
  • [26] Analysis of the fractional diarrhea model with Mittag-Leffler kernel
    Iqbal, Muhammad Sajid
    Ahmed, Nauman
    Akgul, Ali
    Raza, Ali
    Shahzad, Muhammad
    Iqbal, Zafar
    Rafiq, Muhammad
    Jarad, Fahd
    AIMS MATHEMATICS, 2022, 7 (07): : 13000 - 13018
  • [27] On Solutions of Fractional Telegraph Model With Mittag-Leffler Kernel
    Akgul, Ali
    Modanli, Mahmut
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2022, 17 (02):
  • [28] Mittag-Leffler stability of fractional order nonlinear dynamic systems
    Li, Yan
    Chen, YangQuan
    Podlubny, Igor
    AUTOMATICA, 2009, 45 (08) : 1965 - 1969
  • [29] Robust Mittag-Leffler stabilisation of fractional-order systems
    Jonathan Munoz-Vazquez, Aldo
    Parra-Vega, Vicente
    Sanchez-Orta, Anand
    Martinez-Reyes, Fernando
    ASIAN JOURNAL OF CONTROL, 2020, 22 (06) : 2273 - 2281
  • [30] MITTAG-LEFFLER STABILITY OF IMPULSIVE DIFFERENTIAL EQUATIONS OF FRACTIONAL ORDER
    Stamova, Ivanka M.
    QUARTERLY OF APPLIED MATHEMATICS, 2015, 73 (03) : 525 - 535