A fractional order optimal 4D chaotic financial model with Mittag-Leffler law

被引:42
|
作者
Atangana, A. [1 ]
Bonyah, E. [2 ]
Elsadany, A. A. [3 ,4 ]
机构
[1] Univ Free State, Inst Groundwater Studies, ZA-9301 Bloemfontein, South Africa
[2] Univ Educ Winneba Kumasi Campus, Dept Math, Kumasi, Ghana
[3] Prince Sattam Bin Abdulaziz Univ, Coll Sci & Humanities Studies Al Kharj, Dept Math, Al Kharj, Saudi Arabia
[4] Suez Canal Univ, Dept Basic Sci, Fac Comp & Informat, Ismailia 41522, Egypt
关键词
Fractional optimal control; Euler-Lagrange optimality; Chaotic systems; Financial model; Mittag-Leffler function; DYNAMICS; EXISTENCE; EQUATION;
D O I
10.1016/j.cjph.2020.02.003
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, a fractional 4D chaotic financial model with optimal control is investigated. The fractional derivative used in this financial model is Atangana-Baleanu derivative. The existence and uniqueness conditions of solutions for the proposed model are derived based on Mittag-Leffler law. Optimal control is incorporated into the model to maximize output. The Adams-Moulton scheme of the Atangana-Baleanu derivative is utilized to obtain the numerical results which produce new attractors. Euler-Lagrange optimality conditions are determined for the fractional 4D chaotic financial model. The numerical results show that the memory factor has a great influences on the dynamics of the model.
引用
收藏
页码:38 / 53
页数:16
相关论文
共 50 条
  • [1] An efficient approach for fractional nonlinear chaotic model with Mittag-Leffler law
    Veeresha, P.
    Prakasha, D. G.
    Abdel-Aty, Abdel-Haleem
    Singh, Harendra
    Mahmoud, Emad E.
    Kumar, Sunil
    JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2021, 33 (02)
  • [2] Fractional optimal control dynamics of coronavirus model with Mittag-Leffler law
    Bonyah, Ebenezer
    Sagoe, Ato Kwamena
    Kumar, Devendra
    Deniz, Sinan
    ECOLOGICAL COMPLEXITY, 2021, 45
  • [3] Mittag-Leffler synchronization of fractional-order uncertain chaotic systems
    Wang Qiao
    Ding Dong-Sheng
    Qi Dong-Lian
    CHINESE PHYSICS B, 2015, 24 (06)
  • [4] A fractional order HIV-TB coinfection model with nonsingular Mittag-Leffler Law
    Khan, Hasib
    Gomez-Aguilar, J. F.
    Alkhazzan, Abdulwasea
    Khan, Aziz
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (06) : 3786 - 3806
  • [5] Global Mittag-Leffler boundedness and synchronization for fractional-order chaotic systems
    Jian, Jigui
    Wu, Kai
    Wang, Baoxian
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2020, 540
  • [6] A FRACTIONAL-ORDER BOVINE BABESIOSIS EPIDEMIC TRANSMISSION MODEL WITH NONSINGULAR MITTAG-LEFFLER LAW
    Slimane, Ibrahim
    Nieto, Juan J. J.
    Ahmad, Shabir
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2023, 31 (02)
  • [7] Mittag-Leffler stability and generalized Mittag-Leffler stability of fractional-order gene regulatory networks
    Ren, Fengli
    Cao, Feng
    Cao, Jinde
    NEUROCOMPUTING, 2015, 160 : 185 - 190
  • [8] Modeling fractional-order dynamics of Syphilis via Mittag-Leffler law
    Bonyah, E.
    Chukwu, C. W.
    Juga, M. L.
    Fatmawati
    AIMS MATHEMATICS, 2021, 6 (08): : 8367 - 8389
  • [9] Fractional modified Kawahara equation with Mittag-Leffler law
    Bhatter, Sanjay
    Mathur, Amit
    Kumar, Devendra
    Nisar, Kottakkaran Sooppy
    Singh, Jagdev
    CHAOS SOLITONS & FRACTALS, 2020, 131
  • [10] FPGA implementation and control of chaotic systems involving the variable-order fractional operator with Mittag-Leffler law
    Avalos-Ruiz, L. F.
    Zuniga-Aguilar, C. J.
    Gomez-Aguilar, J. F.
    Escobar-Jimenez, R. F.
    Romero-Ugalde, H. M.
    CHAOS SOLITONS & FRACTALS, 2018, 115 : 177 - 189