Quadratic TC-Bezier Curves with Shape Parameter

被引:2
|
作者
Xu Weixiang [1 ]
Wang Liuqiang [2 ]
Liu Xumin [2 ]
机构
[1] Beijing Jiaotong Univ, Sch Traff & Transportat, Beijing 100044, Peoples R China
[2] Capital Normal Univ, Coll Informat Engn, Beijing 100048, Peoples R China
来源
MATERIALS SCIENCE AND ENGINEERING, PTS 1-2 | 2011年 / 179-180卷
关键词
TC-Bezier basis; TC-Bezier curve; continuity; surface modeling;
D O I
10.4028/www.scientific.net/AMR.179-180.1187
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Quadratic TC-Bezier curves with shape parameter is constructed shares most optimal properties as those of the quadratic Bezier curves and its by changing the parameter value in 0 <= lambda <= 2. The circle and ellipse can be curve accurately. Presents G(1) condition of quadratic TC-Bezier curves, the geometric meanings and can be applied to surface modeling conveniently.
引用
收藏
页码:1187 / +
页数:2
相关论文
共 50 条
  • [31] Projective transformation and geometric property of regional quadratic Bezier curves
    Han, XA
    Huang, XL
    PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON COMPUTER AIDED DESIGN & COMPUTER GRAPHICS, 1999, : 1016 - 1020
  • [32] Necessary and Sufficient Conditions for Expressing Quadratic Rational Bezier Curves
    Yang, Chaoyu
    Yang, Jie
    Liu, Ying
    Geng, Xianya
    FRONTIERS IN PHYSICS, 2020, 8
  • [33] G1 are spline approximation of quadratic Bezier curves
    Ahn, YJ
    Kim, HO
    Lee, KY
    COMPUTER-AIDED DESIGN, 1998, 30 (08) : 615 - 620
  • [34] Bezout Coefficients of Coprime Numbers Approximate Quadratic Bezier Curves
    Itza-Ortiz, Benjamin A.
    Lopez-Hernandez, Roberto
    Miramontes, Pedro
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2023, 44 (07) : 2838 - 2844
  • [35] On G(2) continuous interpolatory composite quadratic Bezier curves
    Feng, YY
    Kozak, J
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1996, 72 (01) : 141 - 159
  • [36] Trajectory Optimization For Rendezvous Planning Using Quadratic Bezier Curves
    Manyam, Satyanarayana G.
    Casbeer, David W.
    Weintraub, Isaac E.
    Taylor, Colin
    2021 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2021, : 1405 - 1412
  • [37] Shape factors and shoulder points for shape control of rational Bezier curves
    Sanchez-Reyes, Javier
    COMPUTER-AIDED DESIGN, 2023, 157
  • [38] Modelling human hard palate shape with Bezier curves
    Janssen, Rick
    Moisik, Scott R.
    Dediu, Dan
    PLOS ONE, 2018, 13 (02):
  • [39] Shape description using cubic polynomial Bezier curves
    Cinque, L
    Levialdi, S
    Malizia, A
    PATTERN RECOGNITION LETTERS, 1998, 19 (09) : 821 - 828
  • [40] Rapid analysis of fold shape using Bezier curves
    Srivastava, DC
    Lisle, RJ
    JOURNAL OF STRUCTURAL GEOLOGY, 2004, 26 (09) : 1553 - 1559