EFFICIENT MULTI-OBJECT SEGMENTATION OF 3D MEDICAL IMAGES USING CLUSTERING AND GRAPH CUTS

被引:0
|
作者
Kechichian, Razmig [1 ]
Valette, Sebastien [1 ]
Desvignes, Michel [2 ]
Prost, Remy [1 ]
机构
[1] Univ Lyon, CREATIS, CNRS, INSERM,U630,UMR5220, Lyon, France
[2] INPG, GIPSA LAB, Grenoble, France
关键词
Medical image segmentation; clustering; graph-cuts; ENERGY MINIMIZATION;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We propose an application of multi-label "Graph Cut" optimization algorithms to the simultaneous segmentation of multiple anatomical structures, initialized via an over-segmentation of the image computed by a fast centroidal Voronoi diagram (CVD) clustering algorithm. With respect to comparable segmentations computed directly on the voxels of image volumes, we demonstrate performance improvements on both execution speed and memory footprint by, at least, an order of magnitude, making it possible to process large volumes on commodity hardware which could not be processed pixel-wise.
引用
收藏
页数:4
相关论文
共 50 条
  • [11] 3D multi-object segmentation of cardiac MSCT imaging by using a multi-agent approach
    Fleureau, J.
    Garreau, A.
    Boulmier, D.
    Leclercq, C.
    Hernandez, A.
    IRBM, 2009, 30 (03) : 104 - 113
  • [12] 3D object classification using multi-object Kohonen networks
    Corridoni, JM
    DelBimbo, A
    Landi, L
    PATTERN RECOGNITION, 1996, 29 (06) : 919 - 935
  • [13] Object segmentation in hyperspectral images using active contours and graph cuts
    De La Vega, Susi Huaman
    Manian, Vidya
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2012, 33 (04) : 1246 - 1263
  • [14] OPTIMAL AND EFFICIENT SEGMENTATION FOR 3D VASCULAR FOREST STRUCTURE WITH GRAPH CUTS
    Zhu, Ning
    Chung, Albert C. S.
    2013 20TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2013), 2013, : 1135 - 1139
  • [15] Lumbar and Thoracic Vertebrae Segmentation in CT Scans Using a 3D Multi-Object Localization and Segmentation CNN
    Xiong, Xiaofan
    Graves, Stephen A.
    Gross, Brandie A.
    Buatti, John M.
    Beichel, Reinhard R.
    TOMOGRAPHY, 2024, 10 (05) : 738 - 760
  • [16] Cross-Classification Clustering: An Efficient Multi-Object Tracking Technique for 3-D Instance Segmentation in Connectomics
    Meirovitch, Yaron
    Mi, Lu
    Saribekyan, Hayk
    Matveev, Alexander
    Rolnick, David
    Shavit, Nir
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 8417 - 8427
  • [17] A Novel 3D Segmentation of Vertebral Bones from Volumetric CT Images Using Graph Cuts
    Aslan, Melih S.
    Ali, Asem
    Rara, Ham
    Arnold, Ben
    Farag, Aly A.
    Fahmi, Rachid
    Xiang, Ping
    ADVANCES IN VISUAL COMPUTING, PT 2, PROCEEDINGS, 2009, 5876 : 519 - +
  • [18] Factor Graph based 3D Multi-Object Tracking in Point Clouds
    Poeschmann, Johannes
    Pfeifer, Tim
    Protzel, Peter
    2020 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2020, : 10343 - 10350
  • [19] 3DMOTFormer: Graph Transformer for Online 3D Multi-Object Tracking
    Ding, Shuxiao
    Rehder, Eike
    Schneider, Lukas
    Cordts, Marius
    Gall, Juergen
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 9750 - 9760
  • [20] Automated Segmentation of 3D CT Images Based on Statistical Atlas and Graph Cuts
    Shimizu, Akinobu
    Nakagomi, Keita
    Narihira, Takuya
    Kobatake, Hidefumi
    Nawano, Shigeru
    Shinozaki, Kenji
    Ishizu, Koich
    Togashi, Kaori
    MEDICAL COMPUTER VISION: RECOGNITION TECHNIQUES AND APPLICATIONS IN MEDICAL IMAGING, 2011, 6533 : 214 - +