The maize WRKY transcription factor ZmWRKY17 negatively regulates salt stress tolerance in transgenic Arabidopsis plants

被引:140
|
作者
Cai, Ronghao [1 ]
Dai, Wei [1 ]
Zhang, Congsheng [1 ]
Wang, Yan [1 ]
Wu, Min [1 ]
Zhao, Yang [1 ]
Ma, Qing [1 ]
Xiang, Yan [1 ,2 ]
Cheng, Beijiu [1 ]
机构
[1] Anhui Agr Univ, Sch Life Sci, Natl Engn Lab Crop Stress Resistance Breeding, Hefei 230036, Anhui, Peoples R China
[2] Anhui Agr Univ, Sch Forestry & Landscape Architecture, Lab Modern Biotechnol, Hefei 230036, Anhui, Peoples R China
关键词
ABA; Maize; RNA-seq; Salt stress; WRKY transcription factor; ZmWRKY17; ABSCISIC-ACID; DROUGHT TOLERANCE; OSMOTIC-STRESS; FACTOR FAMILY; NICOTIANA-BENTHAMIANA; FUNCTIONAL-ANALYSIS; ABIOTIC STRESSES; ENHANCES DROUGHT; GENE-EXPRESSION; WATER-STRESS;
D O I
10.1007/s00425-017-2766-9
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
We cloned and characterized the ZmWRKY17 gene from maize. Overexpression of ZmWRKY17 in Arabidopsis led to increased sensitivity to salt stress and decreased ABA sensitivity through regulating the expression of some ABA- and stress-responsive genes. The WRKY transcription factors have been reported to function as positive or negative regulators in many different biological processes including plant development, defense regulation and stress response. This study isolated a maize WRKY gene, ZmWRKY17, and characterized its role in tolerance to salt stress by generating transgenic Arabidopsis plants. Expression of the ZmWRKY17 was up-regulated by drought, salt and abscisic acid (ABA) treatments. ZmWRKY17 was localized in the nucleus with no transcriptional activation in yeast. Yeast one-hybrid assay showed that ZmWRKY17 can specifically bind to W-box, and it can activate W-box-dependent transcription in planta. Heterologous overexpression of ZmWRKY17 in Arabidopsis remarkably reduced plant tolerance to salt stress, as determined through physiological analyses of the cotyledons greening rate, root growth, relative electrical leakage and malondialdehyde content. Additionally, ZmWRKY17 transgenic plants showed decreased sensitivity to ABA during seed germination and early seedling growth. Transgenic plants accumulated higher content of ABA than wild-type (WT) plants under NaCl condition. Transcriptome and quantitative real-time PCR analyses revealed that some stress-related genes in transgenic seedlings showed lower expression level than that in the WT when treated with NaCl. Taken together, these results suggest that ZmWRKY17 may act as a negative regulator involved in the salt stress responses through ABA signalling.
引用
收藏
页码:1215 / 1231
页数:17
相关论文
共 50 条
  • [21] Transcription Factor GmERF105 Negatively Regulates Salt Stress Tolerance in Arabidopsis thaliana
    Li, Lu
    Zhu, Zhen
    Liu, Juan
    Zhang, Yu
    Lu, Yang
    Zhao, Jinming
    Xing, Han
    Guo, Na
    PLANTS-BASEL, 2023, 12 (16):
  • [22] A Novel Sweetpotato WRKY Transcription Factor, IbWRKY2, Positively Regulates Drought and Salt Tolerance in Transgenic Arabidopsis
    Zhu, Hong
    Zhou, Yuanyuan
    Zhai, Hong
    He, Shaozhen
    Zhao, Ning
    Liu, Qingchang
    BIOMOLECULES, 2020, 10 (04)
  • [23] A Wheat WRKY Transcription Factor TaWRKY46 Enhances Tolerance to Osmotic Stress in transgenic Arabidopsis Plants
    Li, Xiaorui
    Tang, Yan
    Zhou, Chunju
    Zhang, Lixin
    Lv, Jinyin
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2020, 21 (04)
  • [24] Maize WRKY Transcription Factor ZmWRKY79 Positively Regulates Drought Tolerance through Elevating ABA Biosynthesis
    Gulzar, Faiza
    Fu, Jingye
    Zhu, Chenying
    Yan, Jie
    Li, Xinglin
    Meraj, Tehseen Ahmad
    Shen, Qinqin
    Hassan, Beenish
    Wang, Qiang
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (18)
  • [25] Overexpression of ZmWRKY65 transcription factor from maize confers stress resistances in transgenic Arabidopsis
    Huo, Tong
    Wang, Chang-Tao
    Yu, Tai-Fei
    Wang, Da-Ming
    Li, Meng
    Zhao, Dan
    Li, Xiu-Ting
    Fu, Jin-Dong
    Xu, Zhao-Shi
    Song, Xin-Yuan
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [26] Overexpression of ZmWRKY65 transcription factor from maize confers stress resistances in transgenic Arabidopsis
    Tong Huo
    Chang-Tao Wang
    Tai-Fei Yu
    Da-Ming Wang
    Meng Li
    Dan Zhao
    Xiu-Ting Li
    Jin-Dong Fu
    Zhao-Shi Xu
    Xin-Yuan Song
    Scientific Reports, 11
  • [27] A WRKY Transcription Factor CbWRKY27 Negatively Regulates Salt Tolerance in Catalpa bungei
    Gu, Jiaojiao
    Lv, Fenni
    Gao, Lulu
    Jiang, Shengji
    Wang, Qing
    Li, Sumei
    Yang, Rutong
    Li, Ya
    Li, Shaofeng
    Wang, Peng
    FORESTS, 2023, 14 (03):
  • [28] A Heat Shock Transcription Factor TrHSFB2a of White Clover Negatively Regulates Drought, Heat and Salt Stress Tolerance in Transgenic Arabidopsis
    Iqbal, Muhammad Zafar
    Jia, Tong
    Tang, Tao
    Anwar, Muhammad
    Ali, Asif
    Hassan, Muhammad Jawad
    Zhang, Youzhi
    Tang, Qilin
    Peng, Yan
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (21)
  • [29] A maize heat shock factor ZmHsf11 negatively regulates heat stress tolerance in transgenic plants
    Qin, Qianqian
    Zhao, Yujun
    Zhang, Jiajun
    Chen, Li
    Si, Weina
    Jiang, Haiyang
    BMC PLANT BIOLOGY, 2022, 22 (01)
  • [30] A maize heat shock factor ZmHsf11 negatively regulates heat stress tolerance in transgenic plants
    Qianqian Qin
    Yujun Zhao
    Jiajun Zhang
    Li Chen
    Weina Si
    Haiyang Jiang
    BMC Plant Biology, 22