Multiclass Classification by Sparse Multinomial Logistic Regression

被引:15
|
作者
Abramovich, Felix [1 ]
Grinshtein, Vadim [2 ]
Levy, Tomer [1 ]
机构
[1] Tel Aviv Univ, Dept Stat & Operat Res, IL-6139001 Tel Aviv, Israel
[2] Open Univ Israel, Dept Math & Comp Sci, IL-4353701 Raanana, Israel
基金
以色列科学基金会;
关键词
Maximum likelihood estimation; Logistics; Feature extraction; Complexity theory; Minimization; Data models; IEEE Sections; Complexity penalty; convex relaxation; feature selection; high-dimensionality; minimaxity; misclassification excess risk; sparsity; HIGH-DIMENSIONAL CLASSIFICATION; MODEL SELECTION; BOUNDS; SLOPE; AGGREGATION; CONSISTENCY; PROPERTY; LASSO;
D O I
10.1109/TIT.2021.3075137
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we consider high-dimensional multiclass classification by sparse multinomial logistic regression. We propose first a feature selection procedure based on penalized maximum likelihood with a complexity penalty on the model size and derive the nonasymptotic bounds for misclassification excess risk of the resulting classifier. We establish also their tightness by deriving the corresponding minimax lower bounds. In particular, we show that there is a phase transition between small and large number of classes. The bounds can be reduced under the additional low noise condition. To find a penalized maximum likelihood solution with a complexity penalty requires, however, a combinatorial search over all possible models. To design a feature selection procedure computationally feasible for high-dimensional data, we propose multinomial logistic group Lasso and Slope classifiers and show that they also achieve the minimax order.
引用
收藏
页码:4637 / 4646
页数:10
相关论文
共 50 条
  • [21] Subspace quadratic regularization method for group sparse multinomial logistic regression
    Wang, Rui
    Xiu, Naihua
    Toh, Kim-Chuan
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2021, 79 (03) : 531 - 559
  • [22] Subspace quadratic regularization method for group sparse multinomial logistic regression
    Rui Wang
    Naihua Xiu
    Kim-Chuan Toh
    Computational Optimization and Applications, 2021, 79 : 531 - 559
  • [23] Cutting Parameters and Material Classification Using Multinomial Logistic Regression
    Bonacini, Leonardo
    Argote Pedraza, Ingrid Lorena
    Senni, Alexandre Padilha
    Tronco, Mario Luiz
    IEEE LATIN AMERICA TRANSACTIONS, 2022, 20 (12) : 2471 - 2477
  • [24] Architectural Style Classification Using Multinomial Latent Logistic Regression
    Xu, Zhe
    Tao, Dacheng
    Zhang, Ya
    Wu, Junjie
    Tsoi, Ah Chung
    COMPUTER VISION - ECCV 2014, PT I, 2014, 8689 : 600 - 615
  • [25] SUBSPACE MULTINOMIAL LOGISTIC REGRESSION ENSEMBLE FOR CLASSIFICATION OF HYPERSPECTRAL IMAGES
    Khodadadzadeh, Mahdi
    Ghamisi, Pedram
    Contreras, Cecilia
    Gloaguen, Richard
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 5740 - 5743
  • [26] Classification of scenery using multinomial logistic regression in a sugarcane crop
    Bonacini, Leonardo
    Natividade Peres, Handel Emanuel
    Higuti, Vitor Akihiro
    Medeiros, Vivian Suzano
    Becker, Marcelo
    Tronco, Mario Luiz
    2022 LATIN AMERICAN ROBOTICS SYMPOSIUM (LARS), 2022 BRAZILIAN SYMPOSIUM ON ROBOTICS (SBR), AND 2022 WORKSHOP ON ROBOTICS IN EDUCATION (WRE), 2022, : 336 - 341
  • [27] SEMI-SUPERVISED HYPERSPECTRAL IMAGE CLASSIFICATION BASED ON A MARKOV RANDOM FIELD AND SPARSE MULTINOMIAL LOGISTIC REGRESSION
    Li, Jun
    Bioucas-Dias, Jose M.
    Plaza, Antonio
    2009 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-5, 2009, : 2119 - +
  • [28] Multinomial Logistic Regression Ensembles
    Lee, Kyewon
    Ahn, Hongshik
    Moon, Hojin
    Kodell, Ralph L.
    Chen, James J.
    JOURNAL OF BIOPHARMACEUTICAL STATISTICS, 2013, 23 (03) : 681 - 694
  • [29] Multinomial and ordinal logistic regression
    Sainani, Kristin L.
    PM&R, 2021, 13 (09) : 1050 - 1055
  • [30] Hybrid Approach with VADER and Multinomial Logistic Regression for Multiclass Sentiment Analysis in Online Customer Review
    Arief, Murahartawaty
    Samsudin, Noor Azah
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (12) : 311 - 320