Iterative multidimensional scaling for industrial process monitoring

被引:4
|
作者
Matheus, Justo [1 ]
Dourado, Antonio [1 ]
Henriques, Jorge [1 ]
Antonio, Maria [2 ]
Nogueira, Dora [2 ]
机构
[1] Univ Coimbra, Dept Informat Engn, Ctr Informat & Syst, P-3000 Coimbra, Portugal
[2] Galp Energia, Coimbra, Portugal
关键词
D O I
10.1109/ICSMC.2006.384359
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Monitoring high dimensional industrial processes for performance analysis and improvement should be done in a low-dimensional space, where human-computer interaction is effective and where the human operator can easily identify the main actual features of the process. For this purpose space reduction must keep the relevant and informative geometric characteristics of the original space, using proper metrics. In this work the reduction of n-dimensional space to bi-dimensional one is developed through multidimensional scaling with a proposed iterative capability. In the 2-B process map, named POM- Projected Orientation Map, the operational regions of the process under specific conditions can be easily classified. This classification is made by recursive clustering Dignet algorithm, giving information to the monitoring system about the possible quality of the running operating conditions. This strategy is applied to the process of Hydro Desulfuration (HDS) from Refinery of Petrogal at Sines (Galp Energia).
引用
收藏
页码:62 / +
页数:3
相关论文
共 50 条
  • [31] Stochastic Multidimensional Scaling
    Rajawat, Ketan
    Kumar, Sandeep
    IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, 2017, 3 (02): : 360 - 375
  • [32] Robust multidimensional scaling
    House, LL
    Banks, D
    COMPSTAT 2004: PROCEEDINGS IN COMPUTATIONAL STATISTICS, 2004, : 251 - 259
  • [33] On a Multidimensional Cluster Scaling
    Sato-Ilic, Mika
    Ilic, Peter
    COMPLEX ADAPTIVE SYSTEMS, 2014, 36 : 278 - +
  • [34] MULTIDIMENSIONAL-SCALING
    JACKSON, JE
    PHOTOGRAPHIC SCIENCE AND ENGINEERING, 1978, 22 (02): : 97 - 101
  • [35] FOUNDATIONS OF MULTIDIMENSIONAL SCALING
    BEALS, R
    KRANTZ, DH
    TVERSKY, A
    PSYCHOLOGICAL REVIEW, 1968, 75 (02) : 127 - &
  • [36] Reduced multidimensional scaling
    Emmanuel Paradis
    Computational Statistics, 2022, 37 : 91 - 105
  • [37] A Survey on Multidimensional Scaling
    Saeed, Nasir
    Nam, Haewoon
    Ul Haq, Mian Imtiaz
    Bhatti, Dost Muhammad Saqib
    ACM COMPUTING SURVEYS, 2018, 51 (03)
  • [38] Local multidimensional scaling
    Venna, Jarkko
    Kaski, Samuel
    NEURAL NETWORKS, 2006, 19 (6-7) : 889 - 899
  • [39] Acoustic monitoring of daily activities based on hidden Markov model and multidimensional scaling
    Hung, Yu-Wei
    Chiu, Yu-Hsien
    Chen, Wei-Hao
    Huang, Kun-Yi
    Cheng, Kuo-Sheng
    JOURNAL OF THE CHINESE INSTITUTE OF ENGINEERS, 2015, 38 (04) : 447 - 457
  • [40] Landscape multidimensional scaling
    Tschumitschew, Katharina
    Klawonn, Frank
    Hoeppner, Frank
    Kolodyazhniy, Vitaliy
    ADVANCES IN INTELLIGENT DATA ANALYSIS VII, PROCEEDINGS, 2007, 4723 : 263 - +