Iterative multidimensional scaling for industrial process monitoring

被引:4
|
作者
Matheus, Justo [1 ]
Dourado, Antonio [1 ]
Henriques, Jorge [1 ]
Antonio, Maria [2 ]
Nogueira, Dora [2 ]
机构
[1] Univ Coimbra, Dept Informat Engn, Ctr Informat & Syst, P-3000 Coimbra, Portugal
[2] Galp Energia, Coimbra, Portugal
关键词
D O I
10.1109/ICSMC.2006.384359
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Monitoring high dimensional industrial processes for performance analysis and improvement should be done in a low-dimensional space, where human-computer interaction is effective and where the human operator can easily identify the main actual features of the process. For this purpose space reduction must keep the relevant and informative geometric characteristics of the original space, using proper metrics. In this work the reduction of n-dimensional space to bi-dimensional one is developed through multidimensional scaling with a proposed iterative capability. In the 2-B process map, named POM- Projected Orientation Map, the operational regions of the process under specific conditions can be easily classified. This classification is made by recursive clustering Dignet algorithm, giving information to the monitoring system about the possible quality of the running operating conditions. This strategy is applied to the process of Hydro Desulfuration (HDS) from Refinery of Petrogal at Sines (Galp Energia).
引用
收藏
页码:62 / +
页数:3
相关论文
共 50 条
  • [1] Multidimensional data in multidimensional scaling using the analytic network process
    Huang, JJ
    Tzeng, GH
    Ong, CS
    PATTERN RECOGNITION LETTERS, 2005, 26 (06) : 755 - 767
  • [2] MULTIDIMENSIONAL-SCALING BY ITERATIVE MAJORIZATION USING RADIAL BASIS FUNCTIONS
    WEBB, AR
    PATTERN RECOGNITION, 1995, 28 (05) : 753 - 759
  • [3] Indicating Care Process Quality: A Multidimensional Scaling Analysis
    Bruehl, Albert
    Sappok-Laue, Henrike
    Lau, Steffi
    Christ-Kobiela, Peter
    Mueller, Joachim
    Sesterhenn-Ochtendung, Britta
    Stuermer-Korff, Rosemarie
    Stelzig, Armin
    Lobb, Michael
    Bleidt, Werner
    JOURNAL OF NURSING MEASUREMENT, 2022, 30 (03) : 364 - 387
  • [4] Multidimensional scaling used in multivariate statistical process control
    Cox, TF
    JOURNAL OF APPLIED STATISTICS, 2001, 28 (3-4) : 365 - 378
  • [5] Iterative multiscale methods for process monitoring
    Binder, T
    Blank, L
    Dahmen, W
    Marquardt, W
    FAST SOLUTION OF DISCRETIZED OPTIMIZATION PROBLEMS, 2001, 138 : 19 - 34
  • [6] Software process improvement motivators: An analysis using multidimensional scaling
    Baddoo N.
    Hall T.
    Empirical Software Engineering, 2002, 7 (2) : 93 - 114
  • [7] Latent Feature Extraction for Process Data via Multidimensional Scaling
    Xueying Tang
    Zhi Wang
    Qiwei He
    Jingchen Liu
    Zhiliang Ying
    Psychometrika, 2020, 85 : 378 - 397
  • [8] Latent Feature Extraction for Process Data via Multidimensional Scaling
    Tang, Xueying
    Wang, Zhi
    He, Qiwei
    Liu, Jingchen
    Ying, Zhiliang
    PSYCHOMETRIKA, 2020, 85 (02) : 378 - 397
  • [9] Multidimensional scaling
    Hout, Michael C.
    Papesh, Megan H.
    Goldinger, Stephen D.
    WILEY INTERDISCIPLINARY REVIEWS-COGNITIVE SCIENCE, 2013, 4 (01) : 93 - 103
  • [10] Use of Multidimensional Scaling for Fault Detection or Monitoring Support in A Continuous Commissioning
    Geoffroy, Hugo
    Berger, Julien
    Colange, Benoit
    Lespinats, Sylvain
    Dutykh, Denys
    Sauce, Gerard
    Buhe, Catherine
    PROCEEDINGS OF BUILDING SIMULATION 2019: 16TH CONFERENCE OF IBPSA, 2020, : 877 - 884