Can Machine Learning be Applied to Carbon Emissions Analysis: An Application to the CO2 Emissions Analysis Using Gaussian Process Regression
被引:14
|
作者:
Ma, Ning
论文数: 0引用数: 0
h-index: 0
机构:
Hainan Coll Econ & Business, Sch Financial Management, Haikou, Hainan, Peoples R ChinaHainan Coll Econ & Business, Sch Financial Management, Haikou, Hainan, Peoples R China
Ma, Ning
[1
]
Shum, Wai Yan
论文数: 0引用数: 0
h-index: 0
机构:
Hang Seng Univ Hong Kong, Dept Econ & Finance, Hong Kong, Peoples R ChinaHainan Coll Econ & Business, Sch Financial Management, Haikou, Hainan, Peoples R China
Shum, Wai Yan
[2
]
Han, Tingting
论文数: 0引用数: 0
h-index: 0
机构:
Hainan Coll Econ & Business, Sch Financial Management, Haikou, Hainan, Peoples R ChinaHainan Coll Econ & Business, Sch Financial Management, Haikou, Hainan, Peoples R China
Han, Tingting
[1
]
Lai, Fujun
论文数: 0引用数: 0
h-index: 0
机构:
Yunnan Univ Finance & Econ, Sch Finance, Kunming, Yunnan, Peoples R ChinaHainan Coll Econ & Business, Sch Financial Management, Haikou, Hainan, Peoples R China
Lai, Fujun
[3
]
机构:
[1] Hainan Coll Econ & Business, Sch Financial Management, Haikou, Hainan, Peoples R China
[2] Hang Seng Univ Hong Kong, Dept Econ & Finance, Hong Kong, Peoples R China
[3] Yunnan Univ Finance & Econ, Sch Finance, Kunming, Yunnan, Peoples R China
Gaussian process regression;
CO2;
emissions;
energy consumption;
economics growth;
industralization;
ENERGY-CONSUMPTION;
ECONOMIC-GROWTH;
FINANCIAL DEVELOPMENT;
DIOXIDE EMISSIONS;
COUNTRIES;
IMPACT;
TRADE;
D O I:
10.3389/fenrg.2021.756311
中图分类号:
TE [石油、天然气工业];
TK [能源与动力工程];
学科分类号:
0807 ;
0820 ;
摘要:
In this paper, a nonparametric kernel prediction algorithm in machine learning is applied to predict CO2 emissions. A literature review has been conducted so that proper independent variables can be identified. Traditional parametric modeling approaches and the Gaussian Process Regression (GPR) algorithms were introduced, and their prediction performance was summarized. The reliability and efficiency of the proposed algorithms were then demonstrated through the comparison of the actual and the predicted results. The results showed that the GPR method can give the most accurate predictions on CO2 emissions.
机构:
University of Hull,Centre of Excellence for Data Science Artificial Intelligence & Modelling (DAIM)University of Hull,Centre of Excellence for Data Science Artificial Intelligence & Modelling (DAIM)
Adewole Adetoro Ajala
Oluwatosin Lawrence Adeoye
论文数: 0引用数: 0
h-index: 0
机构:
Stalwart Ventures LLC,Research DivisionUniversity of Hull,Centre of Excellence for Data Science Artificial Intelligence & Modelling (DAIM)
Oluwatosin Lawrence Adeoye
Olawale Moshood Salami
论文数: 0引用数: 0
h-index: 0
机构:
University of Hull,Centre of Excellence for Data Science Artificial Intelligence & Modelling (DAIM)University of Hull,Centre of Excellence for Data Science Artificial Intelligence & Modelling (DAIM)
Olawale Moshood Salami
Ayoola Yusuf Jimoh
论文数: 0引用数: 0
h-index: 0
机构:
University of Hull,Centre of Excellence for Data Science Artificial Intelligence & Modelling (DAIM)University of Hull,Centre of Excellence for Data Science Artificial Intelligence & Modelling (DAIM)
机构:
North China Elect Power Univ, Dept Econ & Management, Baoding, Hebei, Peoples R ChinaNorth China Elect Power Univ, Dept Econ & Management, Baoding, Hebei, Peoples R China
Wen, Lei
Shao, Hengyang
论文数: 0引用数: 0
h-index: 0
机构:
North China Elect Power Univ, Dept Econ & Management, Baoding, Hebei, Peoples R ChinaNorth China Elect Power Univ, Dept Econ & Management, Baoding, Hebei, Peoples R China
机构:
Department of Statistics, Jahangirnagar University, Savar, Dhaka
Special Foreign Researcher under JSPS Post-Doctoral Fellowship Program, Faculty of Agriculture, Shinshu UniversityDepartment of Statistics, Jahangirnagar University, Savar, Dhaka
Salam Md.A.
Noguchi T.
论文数: 0引用数: 0
h-index: 0
机构:
Department of Forest Science, Faculty of Agriculture, Shinshu University, Nagano-ken 399-4598Department of Statistics, Jahangirnagar University, Savar, Dhaka
机构:
Chinese Acad Sci, Aerosp Informat Res Inst, Key Lab Digital Earth Sci, Beijing 100094, Peoples R China
Int Res Ctr Big Data Sustainable Dev Goals, Beijing 100094, Peoples R China
Univ Chinese Acad Sci, Beijing 100049, Peoples R ChinaChinese Acad Sci, Aerosp Informat Res Inst, Key Lab Digital Earth Sci, Beijing 100094, Peoples R China
Ji, Zhanghui
Song, Hao
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Geosci Beijing, Sch Earth Sci & Resources, Beijing 100083, Peoples R ChinaChinese Acad Sci, Aerosp Informat Res Inst, Key Lab Digital Earth Sci, Beijing 100094, Peoples R China
Song, Hao
Lei, Liping
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Aerosp Informat Res Inst, Key Lab Digital Earth Sci, Beijing 100094, Peoples R China
Int Res Ctr Big Data Sustainable Dev Goals, Beijing 100094, Peoples R China
Univ Chinese Acad Sci, Beijing 100049, Peoples R ChinaChinese Acad Sci, Aerosp Informat Res Inst, Key Lab Digital Earth Sci, Beijing 100094, Peoples R China
Lei, Liping
Sheng, Mengya
论文数: 0引用数: 0
h-index: 0
机构:
China Highway Engn Consultants Corp, Beijing 100089, Peoples R ChinaChinese Acad Sci, Aerosp Informat Res Inst, Key Lab Digital Earth Sci, Beijing 100094, Peoples R China
Sheng, Mengya
Guo, Kaiyuan
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Aerosp Informat Res Inst, Key Lab Digital Earth Sci, Beijing 100094, Peoples R China
Int Res Ctr Big Data Sustainable Dev Goals, Beijing 100094, Peoples R China
Univ Chinese Acad Sci, Beijing 100049, Peoples R ChinaChinese Acad Sci, Aerosp Informat Res Inst, Key Lab Digital Earth Sci, Beijing 100094, Peoples R China
Guo, Kaiyuan
Zhang, Shaoqing
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Aerosp Informat Res Inst, Key Lab Digital Earth Sci, Beijing 100094, Peoples R China
Int Res Ctr Big Data Sustainable Dev Goals, Beijing 100094, Peoples R China
Univ Chinese Acad Sci, Beijing 100049, Peoples R ChinaChinese Acad Sci, Aerosp Informat Res Inst, Key Lab Digital Earth Sci, Beijing 100094, Peoples R China