Intersection Problem for Simple 2-fold (3n, n, 3) Group Divisible Designs

被引:0
|
作者
Demirkale, Fatih [1 ]
Donovan, Diane [1 ]
Lindner, C. C. [2 ]
机构
[1] Univ Queensland, Sch Math & Phys, Ctr Discrete Math & Comp, Brisbane, Qld 4072, Australia
[2] Auburn Univ, Dept Math & Stat, Auburn, AL 36849 USA
关键词
Intersection problem; Group divisible designs; Quasigroups; TRIPLE-SYSTEMS;
D O I
10.1007/s00373-013-1397-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we will give intersection numbers for two simple 2-fold (3n, n, 3) group divisible designs. More precisely, we will develop constructions which show that there exists two simple 2-fold (3n, n, 3) group divisible designs which intersect in precisely triples for . There are some exceptions for n = 2, 3, 4.
引用
收藏
页码:537 / 545
页数:9
相关论文
共 50 条
  • [21] Systematics of (n,2n) and (n,3n) Reaction Cross Sections
    Yao Lishan(Chinese Institute of Nuclear Research
    中国核科技报告, 1989, (S1) : 46 - 46
  • [22] A Class of Group Divisible 3-Designs and Their Applications
    Wang, J.
    Ji, L.
    JOURNAL OF COMBINATORIAL DESIGNS, 2009, 17 (02) : 136 - 146
  • [23] 3N bound state formalism based on 3N free basis states
    Harzchi, M.
    Bayegan, S.
    JOURNAL OF THEORETICAL AND APPLIED PHYSICS, 2014, 8 (01)
  • [24] RESOLVABLE GROUP DIVISIBLE DESIGNS WITH BLOCK SIZE 3
    ASSAF, AM
    HARTMAN, A
    DISCRETE MATHEMATICS, 1989, 77 (1-3) : 5 - 20
  • [25] Solving the (n(2) - 1)-Puzzle with 8/3n(3) Expected Moves
    Parberry, Ian
    ALGORITHMS, 2015, 8 (03): : 459 - 465
  • [26] (N,3N) PROCESSES AND STATISTICAL THEORY
    LISKIEN, H
    NUCLEAR PHYSICS A, 1968, A118 (02) : 379 - &
  • [27] 3N=1+2A+2B+ ...
    STRAUS, EG
    AMERICAN MATHEMATICAL MONTHLY, 1983, 90 (08): : 569 - 569
  • [28] 2N and 3N Systems in a Three Dimensional Formalism
    Topolnicki, Kacper
    Golak, Jacek
    Skibinski, Roman
    Elmeshneb, Alaa Eldeen
    Witala, Henryk
    Nogga, Andreas
    Kamada, Hiroyuki
    FEW-BODY SYSTEMS, 2014, 55 (8-10) : 835 - 838
  • [29] 2N and 3N Systems in a Three Dimensional Formalism
    Kacper Topolnicki
    Jacek Golak
    Roman Skibiński
    Alaa Eldeen Elmeshneb
    Henryk Witała
    Andreas Nogga
    Hiroyuki Kamada
    Few-Body Systems, 2014, 55 : 835 - 838
  • [30] Group divisible designs with block size 4 and number of groups 2 or 3
    Sarvate, Dinesh G.
    Nanfuka, Mary
    ARS COMBINATORIA, 2018, 141 : 229 - 241