Ship Detection in High-Resolution Optical Remote Sensing Images Aided by Saliency Information

被引:37
|
作者
Ren, Zhida [1 ,2 ]
Tang, Yongqiang [1 ]
He, Zewen [1 ,2 ]
Tian, Lei [1 ,2 ]
Yang, Yang [1 ]
Zhang, Wensheng [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Automat, Res Ctr Precis Sensing & Control, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing 101408, Peoples R China
基金
中国国家自然科学基金;
关键词
Marine vehicles; Optical imaging; Remote sensing; Task analysis; Feature extraction; Object detection; Saliency detection; Deep learning; high-resolution optical images; remote sensing; saliency detection; ship detection; OBJECT DETECTION; MODEL; SHAPE;
D O I
10.1109/TGRS.2022.3173610
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Ship detection is a crucial but challenging task in optical remote sensing images. Recently, thanks to the emergence of deep neural networks (DNNs), significant progress has been made in ship detection. However, there are still two significant issues that must be addressed: 1) the high-resolution optical images may confuse the background with the ship, leading to more false alarms during detection and 2) the detector receives fewer positive samples due to the sparse and uneven distribution of ships in the optical remote sensing images. In this article, we innovatively propose using the saliency information to aid the ship detection task to tackle these two issues. To achieve this goal, we devise two novel modules, feature-enhanced structure (FES) and saliency prediction branch (SPB), to boost the capacity of ship detection in complex environments and propose a new sampling strategy named salient screening mechanism (SSM) to increase the number of positive samples. More specifically, SSM is adopted during the training phase to mine more positive samples from the ignored set. Then, in an end-to-end learning fashion, a neural network that incorporates our carefully designed FES and SPB is trained to gain more discriminative information for distinguishing the foreground and the background. To evaluate the effectiveness of our proposal, two new datasets HRSC-SO and DOTA-isaid-ship are constructed, which possess the annotation information for both object detection and saliency detection. We conduct extensive experiments on the constructed dataset, and the results demonstrate that our method outperforms the previous state-of-the-art approaches.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Visual saliency mechanism-based object recognition with high-resolution remote-sensing images
    He, Lin
    Li, Chen
    JOURNAL OF ENGINEERING-JOE, 2020, 2020 (13): : 379 - 382
  • [42] Change Detection and Feature Extraction Using High-Resolution Remote Sensing Images
    Sharma V.K.
    Luthra D.
    Mann E.
    Chaudhary P.
    Chowdary V.M.
    Jha C.S.
    Remote Sensing in Earth Systems Sciences, 2022, 5 (3) : 154 - 164
  • [43] Deep hierarchical transformer for change detection in high-resolution remote sensing images
    Liu, Bing
    Yu, Anzhu
    Zuo, Xibing
    Wang, Ruirui
    Qiu, Chunping
    Yu, Xuchu
    EUROPEAN JOURNAL OF REMOTE SENSING, 2023, 56 (01)
  • [44] BD-YOLO: detection algorithm for high-resolution remote sensing images
    Lou, Haitong
    Liu, Xingchen
    Bi, Lingyun
    Liu, Haiying
    Guo, Junmei
    PHYSICA SCRIPTA, 2024, 99 (06)
  • [45] Object detection of high-resolution remote sensing images by neural architecture search
    Yang, Jun
    Han, Peng-Fei
    Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2024, 54 (09): : 2646 - 2657
  • [46] Semantic Descriptions of High-Resolution Remote Sensing Images
    Wang, Binqiang
    Lu, Xiaoqiang
    Zheng, Xiangtao
    Li, Xuelong
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2019, 16 (08) : 1274 - 1278
  • [47] SHIP DETECTION AND RECOGNITION IN HIGH-RESOLUTION SATELLITE IMAGES
    Antelo, J.
    Ambrosio, G.
    Gonzalez, J.
    Galindo, C.
    2009 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-5, 2009, : 2894 - 2897
  • [48] Self-Supervised Learning for High-Resolution Remote Sensing Images Change Detection With Variational Information Bottleneck
    Wang, Congcong
    Du, Shouhang
    Sun, Wenbin
    Fan, Deqin
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 : 5849 - 5866
  • [49] Structures Detection Based on CLSK Model Combined With Shadow Information Using High-Resolution Remote Sensing Images
    Wang, Chengrui
    Xu, Kai
    Li, Rong
    Zhang, Zhiyong
    Qin, Kun
    Xu, Yubin
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 4304 - 4319
  • [50] Structures Detection Based on CLSK Model Combined With Shadow Information Using High-Resolution Remote Sensing Images
    Wang, Chengrui
    Xu, Kai
    Li, Rong
    Zhang, Zhiyong
    Qin, Kun
    Xu, Yubin
    IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17 : 4304 - 4319