Collapse in the nonlinear Schrodinger equation of critical dimension {σ=1, D=2}

被引:2
|
作者
Ovchinnikov, YN [1 ]
Sigal, IM
机构
[1] Max Planck Inst Phys Complex Syst, D-01187 Dresden, Germany
[2] Russian Acad Sci, LD Landau Theoret Phys Inst, Moscow 117940, Russia
[3] Univ Toronto, Dept Math, Toronto, ON M5S 3G3, Canada
基金
俄罗斯基础研究基金会;
关键词
02.30.Jr; 03.65.Ge;
D O I
10.1134/1.1485267
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Collapsing solutions to the nonlinear Schrodinger equation of critical dimension {sigma = 1, D = 2} are analyzed in the adiabatic approximation. A three-parameter set of solutions is obtained for the scale factor lambda(t). It is shown that the Talanov solution lies on the separatrix between the regions of collapse and convenient expansion. A comparison with numerical solutions indicates that weakly collapsing solutions provide a good initial approximation to the collapse problem. (C) 2002 MAIK "Nauka / Interperiodica".
引用
收藏
页码:357 / 361
页数:5
相关论文
共 50 条
  • [41] SINGLE PEAK SOLUTIONS FOR CRITICAL SCHRODINGER EQUATION IN DIMENSION TWO
    Feng, Weixun
    Qin, Dongdong
    Zhu, Rui
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2025,
  • [42] The transition from diffusion to blow-up for a nonlinear Schrodinger equation in dimension 1
    Adami, R
    Sacchetti, A
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (39): : 8379 - 8392
  • [43] Darboux Transformation for the 3-Dimension Nonlinear Schrodinger Equation
    Gui, Mingxiang
    Huang, Jing
    IEEE PHOTONICS JOURNAL, 2018, 10 (03):
  • [44] Stationary solutions to a nonlinear Schrodinger equation with potential in one dimension
    Maris, M
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2003, 133 : 409 - 437
  • [45] CONSERVED ENERGIES FOR THE CUBIC NONLINEAR SCHRODINGER EQUATION IN ONE DIMENSION
    Koch, Herbert
    Tataru, Daniel
    DUKE MATHEMATICAL JOURNAL, 2018, 167 (17) : 3207 - 3313
  • [46] Nonlinear singular perturbations of the fractional Schrodinger equation in dimension one
    Carlone, Raffaele
    Finco, Domenico
    Tentarelli, Lorenzo
    NONLINEARITY, 2019, 32 (08) : 3112 - 3143
  • [47] REMARK ON THE PERIODIC MASS CRITICAL NONLINEAR SCHRODINGER EQUATION
    Kishimoto, Nobu
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 142 (08) : 2649 - 2660
  • [48] On the formation of singularities in solutions of the critical nonlinear Schrodinger equation
    Perelman, G
    ANNALES HENRI POINCARE, 2001, 2 (04): : 605 - 673
  • [49] Solution of the nonlinear Schrodinger equation (1
    Segovia Chaves, Francis
    Cabrera, Emilse
    REDES DE INGENIERIA-ROMPIENDO LAS BARRERAS DEL CONOCIMIENTO, 2015, 6 (02): : 26 - 32
  • [50] Localized nodal solutions for a critical nonlinear Schrodinger equation
    Chen, Shaowei
    Liu, Jiaquan
    Wang, Zhi-Qiang
    JOURNAL OF FUNCTIONAL ANALYSIS, 2019, 277 (02) : 594 - 640