Collapse in the nonlinear Schrodinger equation of critical dimension {σ=1, D=2}

被引:2
|
作者
Ovchinnikov, YN [1 ]
Sigal, IM
机构
[1] Max Planck Inst Phys Complex Syst, D-01187 Dresden, Germany
[2] Russian Acad Sci, LD Landau Theoret Phys Inst, Moscow 117940, Russia
[3] Univ Toronto, Dept Math, Toronto, ON M5S 3G3, Canada
基金
俄罗斯基础研究基金会;
关键词
02.30.Jr; 03.65.Ge;
D O I
10.1134/1.1485267
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Collapsing solutions to the nonlinear Schrodinger equation of critical dimension {sigma = 1, D = 2} are analyzed in the adiabatic approximation. A three-parameter set of solutions is obtained for the scale factor lambda(t). It is shown that the Talanov solution lies on the separatrix between the regions of collapse and convenient expansion. A comparison with numerical solutions indicates that weakly collapsing solutions provide a good initial approximation to the collapse problem. (C) 2002 MAIK "Nauka / Interperiodica".
引用
收藏
页码:357 / 361
页数:5
相关论文
共 50 条