An Anomaly Detection Method to Detect Web Attacks Using Stacked Auto-Encoder

被引:0
|
作者
Vartouni, Ali Moradi [1 ]
Kashi, Saeed Sedighian [1 ]
Teshnehlab, Mohammad [1 ]
机构
[1] KN Toosi Univ Technol, Fac Comp Engn, Tehran, Iran
关键词
Anomaly Detection; Web Application Firewall (WAF); Stacked Auto-Encoder (SAE); Isolation Forest; INTRUSION DETECTION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Network borne attacks are currently major threats to information security. Enormous efforts such as scanners, encryption devices, intrusion detection systems and firewalls have been made to mitigate these attacks. Web application firewalls use intrusion detection techniques to protect servers form HTTP traffic and, Machine learning algorithms have used based on anomaly detection in these firewalls. In this work, we proposed a method based on the deep neural network as feature learning method and isolation forest as a classifier. We compared this method with the methods does not include feature extraction models on CSIC 2010 data set. Additionally, we applied different activation function and learning for our deep neural network. Results show that deep models are more accurate than methods do not have feature extraction.
引用
收藏
页码:131 / 134
页数:4
相关论文
共 50 条
  • [11] Event log anomaly detection method based on auto-encoder and control flow
    Daoyu Kan
    Xianwen Fang
    Multimedia Systems, 2024, 30
  • [12] Blurred Image Region Detection based on Stacked Auto-Encoder
    Zhou, Yuan
    Yang, Jianxing
    Chen, Yang
    Kung, Sun-Yuan
    2018 24TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2018, : 2959 - 2964
  • [13] Unsupervised Anomaly Detection Using Variational Auto-Encoder based Feature Extraction
    Yao, Rong
    Liu, Chongdang
    Zhang, Linxuan
    Peng, Peng
    2019 IEEE INTERNATIONAL CONFERENCE ON PROGNOSTICS AND HEALTH MANAGEMENT (ICPHM), 2019,
  • [14] Unsupervised Anomaly Detection in Flight Data Using Convolutional Variational Auto-Encoder
    Memarzadeh, Milad
    Matthews, Bryan
    Avrekh, Ilya
    AEROSPACE, 2020, 7 (08)
  • [15] PATCH-WISE AUTO-ENCODER FOR VISUAL ANOMALY DETECTION
    Cui, Yajie
    Liu, Zhaoxiang
    Lian, Shiguo
    2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 870 - 874
  • [16] A Multilayer LSTM Auto-Encoder for Fetal ECG Anomaly Detection
    Skarga-Bandurova, Inna
    Biloborodova, Tetiana
    Skarha-Bandurov, Illia
    Boltov, Yehor
    Derkach, Maryna
    PHEALTH 2021, 2021, 285 : 147 - 152
  • [17] A Low Inertia Guided Auto-Encoder for Anomaly Detection in Networks
    Nguimbous, Yves Nsoga
    Ksantini, Riadh
    Bouhoula, Adel
    2020 28TH INTERNATIONAL CONFERENCE ON SOFTWARE, TELECOMMUNICATIONS AND COMPUTER NETWORKS (SOFTCOM), 2020, : 71 - 76
  • [18] Texture and semantic convolutional auto-encoder for anomaly detection and segmentation
    Luo, Jintao
    Gao, Can
    Wan, Da
    Shen, Linlin
    IET COMPUTER VISION, 2023, 17 (07) : 829 - 843
  • [19] Patch distance based auto-encoder for industrial anomaly detection
    Ma, Zeqi
    Li, Jiaxing
    Wong, Wai Keung
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 270
  • [20] Learning Sparse Representation With Variational Auto-Encoder for Anomaly Detection
    Sun, Jiayu
    Wang, Xinzhou
    Xiong, Naixue
    Shao, Jie
    IEEE ACCESS, 2018, 6 : 33353 - 33361