Forecasting by Machine Learning Techniques and Econometrics: A Review

被引:23
|
作者
Shobana, G. [1 ]
Umamaheswari, K. [2 ]
机构
[1] Madras Christian Coll, Dept Comp Applicat, Chennai, Tamil Nadu, India
[2] Bharathi Womens Coll, Dept Comp Sci, Chennai, Tamil Nadu, India
关键词
Econometrics; Economic Data; Machine Learning; Supervised; Unsupervised;
D O I
10.1109/ICICT50816.2021.9358514
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Econometricians deal with a tremendous amount of data to derive the relationships between economic entities. When statistical techniques are applied to the economic data to determine the relative economic entities with verifiable observations, this quantitative analysis is termed Econometrics. Traditional Econometric methods employ pure statistical and mathematical concepts to analyze economic data. Applied Econometrics deals with exploring real-world observations like forecasting, fluctuating market prices, economic outcomes or results, etc. In recent years, Machine Learning models are applied to quantitative data available in almost all domains. Machine Learning Models perform very efficiently in the classification process and it is used in the field of economics to classify the economic data more accurately than traditional econometric models. In this paper, several machine learning methods that are specifically used for economic data are explored. This paper further investigates the various Supervised machine learning techniques that contribute effectively along with metrics that are involved in the analysis procedure of econometric models. This study provides deep insight into those machine learning models preferred by the Econometricians and their future implications.
引用
收藏
页码:1010 / 1016
页数:7
相关论文
共 50 条
  • [41] Comparative Analysis of Supervised Machine Learning Techniques for Sales Forecasting
    Raizada, Stuti
    Saini, Jatinderkumar R.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2021, 12 (11) : 102 - 110
  • [42] Forecasting the Cultivation in Rural Area Using Machine Learning Techniques
    Ahad, Abdul
    Bujjibabu, L.
    Prasad, K. Surya Ram
    Raju, K. Basava
    Raghavender, K. V.
    PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON DATA SCIENCE, MACHINE LEARNING AND APPLICATIONS, VOL 1, ICDSMLA 2023, 2025, 1273 : 439 - 448
  • [43] Power system state forecasting using machine learning techniques
    Debottam Mukherjee
    Samrat Chakraborty
    Sandip Ghosh
    Electrical Engineering, 2022, 104 : 283 - 305
  • [44] PV-Power Forecasting using Machine Learning Techniques
    Al Arafat, Kazi Abdullah
    Creer, Kode
    Debnath, Anjan
    Olowu, Temitayo O.
    Parvez, Imtiaz
    2024 IEEE INTERNATIONAL CONFERENCE ON ELECTRO INFORMATION TECHNOLOGY, EIT 2024, 2024, : 480 - 484
  • [45] Forecasting worldwide empty container availability with machine learning techniques
    Christoph Martius
    Lutz Kretschmann
    Miriam Zacharias
    Carlos Jahn
    Ole John
    Journal of Shipping and Trade, 7 (1)
  • [46] Forecasting Dengue Fever Using Machine Learning Regression Techniques
    Baker, Qanita Bani
    Faraj, Dalya
    Alguzo, Alanoud
    2021 12TH INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION SYSTEMS (ICICS), 2021, : 157 - 163
  • [47] Enhancing Air Quality Forecasting Using Machine Learning Techniques
    Shahbazi, Zeinab
    Shahbazi, Zahra
    Nowaczyk, Slawomir
    IEEE ACCESS, 2024, 12 : 197290 - 197299
  • [48] Power system state forecasting using machine learning techniques
    Mukherjee, Debottam
    Chakraborty, Samrat
    Ghosh, Sandip
    ELECTRICAL ENGINEERING, 2022, 104 (01) : 283 - 305
  • [49] Machine Learning and Deep Learning Techniques for Residential Load Forecasting: A Comparative Analysis
    Shabbir, Noman
    Kutt, Lauri
    Raja, Hadi A.
    Ahmadiahangar, Roya
    Rosin, Argo
    Husev, Oleksandr
    2021 IEEE 62ND INTERNATIONAL SCIENTIFIC CONFERENCE ON POWER AND ELECTRICAL ENGINEERING OF RIGA TECHNICAL UNIVERSITY (RTUCON), 2021,
  • [50] Machine learning methods for solar radiation forecasting: A review
    Voyant, Cyril
    Notton, Gilles
    Kalogirou, Soteris
    Nivet, Marie-Laure
    Paoli, Christophe
    Motte, Fabrice
    Fouilloy, Alexis
    RENEWABLE ENERGY, 2017, 105 : 569 - 582