Theoretical analysis of an improved covariance matrix estimator in non-Gaussian noise

被引:0
|
作者
Pascal, F [1 ]
Forster, P [1 ]
Ovarlez, JP [1 ]
Larzabal, R [1 ]
机构
[1] Off Natl Etud & Rech Aerosp, F-91761 Palaiseau, France
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a detailed theoretical analysis of a recently introduced covariance matrix estimator, called the Fixed Point Estimate (FPE). It plays a significant role in radar detection applications. This estimate is provided by the Maximum Likelihood Estimation (MLE) theory when the non-Gaussian noise is modelled as a Spherically Invariant Random Process (SIRP). We study in details its properties: existence, uniqueness, unbiasedness, consistency and asymptotic distribution. We propose also an algorithm for its computation and prove the convergence of this numerical procedure. These results will allow to study the performance analysis of the adaptive CFAR radar detectors (GLRT-LQ, BORD,...).
引用
收藏
页码:69 / 72
页数:4
相关论文
共 50 条
  • [31] Performance analysis for direction finding in non-Gaussian noise
    Sadler, BM
    Kozick, RJ
    Moore, T
    ICASSP '99: 1999 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, PROCEEDINGS VOLS I-VI, 1999, : 2857 - 2860
  • [32] Non-Gaussian analysis of noise for metal interconnection electromigration
    He Liang
    Du Lei
    Huang Xiao-Jun
    Chen Hua
    Chen Wen-Hao
    Sun Peng
    Han Liang
    ACTA PHYSICA SINICA, 2012, 61 (20)
  • [33] Performance analysis for direction finding in non-Gaussian noise
    Sadler, Brian M.
    Kozick, Richard J.
    Moore, Terrence
    ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, 1999, 5 : 2857 - 2860
  • [34] ON THE CAPACITY OF CHANNELS WITH GAUSSIAN AND NON-GAUSSIAN NOISE
    MCKEAGUE, IW
    INFORMATION AND CONTROL, 1981, 51 (02): : 153 - 173
  • [35] DETECTOR RELATIVE EFFICIENCY ANALYSIS IN NON-GAUSSIAN NOISE
    WONG, BCY
    BLAKE, IF
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 1988, 325 (06): : 755 - 774
  • [36] Least square single-tone frequency estimator in non-Gaussian colored noise
    Liu, Shuang-Ping
    Wen, Xiang
    Wang, Zhi-Gang
    Tongxin Xuebao/Journal on Communications, 2008, 29 (07): : 62 - 68
  • [37] Analysis of meridian estimator performance for non-gaussian pdf data samples
    Kurkin D.A.
    Roenko A.A.
    Lukin V.V.
    Djurovic I.
    Telecommunications and Radio Engineering (English translation of Elektrosvyaz and Radiotekhnika), 2010, 69 (08): : 669 - 680
  • [38] Improved Shrinkage Estimator of Large-Dimensional Covariance Matrix under the Complex Gaussian Distribution
    Zhang, Bin
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020
  • [39] DETECTION IN MULTIVARIATE NON-GAUSSIAN NOISE
    WONG, BCY
    BLAKE, IF
    IEEE TRANSACTIONS ON COMMUNICATIONS, 1994, 42 (2-4) : 1672 - 1683
  • [40] Nonlinear Filtering of Non-Gaussian Noise
    K. N. Plataniotis
    D. Androutsos
    A. N. Venetsanopoulos
    Journal of Intelligent and Robotic Systems, 1997, 19 : 207 - 231