Bulk-edge correspondence in the trimer Su-Schrieffer-Heeger model

被引:32
|
作者
Anastasiadis, Adamantios [1 ]
Styliaris, Georgios [2 ,3 ]
Chaunsali, Rajesh [4 ]
Theocharis, Georgios [1 ]
Diakonos, Fotios K. [5 ]
机构
[1] Le Mans Univ, Lab Acoust Univ Mans LAUM, UMR 6613, Inst Acoust Grad Sch IA GS, Le Mans, France
[2] Max Planck Inst Quantum Opt, Hans Kopfermann Str 1, D-85748 Garching, Germany
[3] Munich Ctr Quantum Sci & Technol MCQST, Schellingstr 4, D-80799 Munich, Germany
[4] Indian Inst Sci, Dept Aerosp Engn, Bangalore 560012, Karnataka, India
[5] Univ Athens, Dept Phys, Athens 15784, Greece
基金
欧洲研究理事会;
关键词
PHASE; POLARIZATION; GUIDE;
D O I
10.1103/PhysRevB.106.085109
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A remarkable feature of the trimer Su-Schrieffer-Heeger (SSH3) model is that it supports localized edge states. However, in contrast to the dimer version of the model, a change in the total number of edge states in SSH3 without mirror-symmetry is not necessarily associated with a phase transition, i.e., a closing of the band gap. As such, the topological invariant predicted by the 10-fold way classification does not always coincide with the total number of edge states present. Moreover, although Zak???s phase remains quantized for the case of a mirror-symmetric chain, it is known that it fails to take integer values in the absence of this symmetry and thus it cannot play the role of a well-defined bulk invariant in the general case. Attempts to establish a bulk-edge correspondence have been made via Green???s functions or through extensions to a synthetic dimension. Here we propose a simple alternative for SSH3, utilizing the previously introduced sublattice Zak???s phase, which also remains valid in the absence of mirror symmetry and for noncommensurate chains. The defined bulk quantity takes integer values, is gauge invariant, and can be interpreted as the difference of the number of edge states between a reference and a target Hamiltonian. Our derivation further predicts the exact corrections for finite open chains, is straightforwardly generalizable, and invokes a chiral-like symmetry present in this model.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Competing orders and unconventional criticality in the Su-Schrieffer-Heeger model
    Weber, Manuel
    Toldin, Francesco Parisen
    Hohenadler, Martin
    PHYSICAL REVIEW RESEARCH, 2020, 2 (02):
  • [42] Topological marker approach to an interacting Su-Schrieffer-Heeger model
    Melo, Pedro B.
    Junior, Sebastiao A. S.
    Chen, Wei
    Mondaini, Rubem
    Paiva, Thereza
    PHYSICAL REVIEW B, 2023, 108 (19)
  • [43] Variational study of the interacting, spinless Su-Schrieffer-Heeger model
    Yahyavi, M.
    Saleem, L.
    Hetenyi, B.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2018, 30 (44)
  • [44] Su-Schrieffer-Heeger model applied to chains of finite length
    Vos, FLJ
    Aalberts, DP
    vanSaarloos, W
    PHYSICAL REVIEW B, 1996, 53 (22): : 14922 - 14928
  • [45] Topological invariants in dissipative extensions of the Su-Schrieffer-Heeger model
    Dangel, Felix
    Wagner, Marcel
    Cartarius, Holger
    Main, Joerg
    Wunner, Gunter
    PHYSICAL REVIEW A, 2018, 98 (01)
  • [46] HUBBARD VERSUS PEIERLS AND THE SU-SCHRIEFFER-HEEGER MODEL OF POLYACETYLENE
    KIVELSON, S
    HEIM, DE
    PHYSICAL REVIEW B, 1982, 26 (08): : 4278 - 4292
  • [47] STATIONARY LATTICE SOLUTIONS OF THE CONTINUOUS SU-SCHRIEFFER-HEEGER MODEL
    PUFF, H
    STREITWOLF, HW
    SYNTHETIC METALS, 1993, 57 (2-3) : 4431 - 4436
  • [48] Bosonic orbital Su-Schrieffer-Heeger model in a lattice of rings
    Nicolau, Eulalia
    Marques, Anselmo M.
    Mompart, Jordi
    Dias, Ricardo G.
    Ahufinger, Veronica
    PHYSICAL REVIEW A, 2023, 108 (02)
  • [49] Path integral description of a semiclassical Su-Schrieffer-Heeger model
    Zoli, M
    PHYSICAL REVIEW B, 2003, 67 (19):
  • [50] Topological photonic Tamm states and the Su-Schrieffer-Heeger model
    Henriques, J. C. G.
    Rappoport, T. G.
    Bludov, Y., V
    Vasilevskiy, M., I
    Peres, N. M. R.
    PHYSICAL REVIEW A, 2020, 101 (04)