Using carbon black to facilitate fast charging in lithium-ion batteries

被引:36
|
作者
Hu, Jingwei [1 ]
Zhong, Shengwen [1 ]
Yan, Tingting [1 ]
机构
[1] Jiangxi Univ Sci & Technol, Fac Mat Met & Chem, Jiangxi Key Lab Power Battery & Mat, Ganzhou 341000, Peoples R China
基金
中国国家自然科学基金;
关键词
Fast charging; High energy density; Carbon black; Batteries; Lithium plating; GRAPHITE; ELECTROLYTE;
D O I
10.1016/j.jpowsour.2021.230342
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
High-energy-density lithium (Li)-ion batteries with excellent fast-charging ability are crucial for popularizing electric vehicles (EVs). Although graphite has a high energy density, the near 0 V redox potential vs. Li/Li+ and selective Li+ intercalation limit its application for fast charging. Carbon black (CB) is an amorphous carbon with graphite-like crystallites that have more orientations and a larger lattice spacing than graphite, thereby facilitating Li+ intercalation. CB is only recently investigated for fast-charging applications. Here, the battery performance is systematically improved by modifying the CB content of graphite, thereby endowing batteries with a high energy density and a fast-charging ability. Optimized anodes with a commercial-level areal capacity of approximately 3 mAh cm(-2) are prepared and used to prepare pouch cells (>2 A h). These cells have a high energy density of 200 Wh kg- 1 and 420 Wh L-1 and retain 87% of the initial capacity after 500 cycles at 3C. The improved fast-charging ability is attributed to the reduction in the Li(+ )intercalation resistance after the introduction of CB. The composite anode fabrication is compatible with the existing production processes. Thus, the composite anode can potentially be used with high-capacity cathodes to fabricate high-energy-density batteries with fast-charging ability for EVs.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Inorganic lithium-ion conductors for fast-charging lithium batteries: a review
    Xue, Ning
    Zhang, Chang
    Liu, Wei
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2024,
  • [22] Fast charging design for Lithium-ion batteries via Bayesian optimization
    Jiang, Benben
    Berliner, Marc D.
    Lai, Kun
    Asinger, Patrick A.
    Zhao, Hongbo
    Herring, Patrick K.
    Bazant, Martin Z.
    Braatz, Richard D.
    APPLIED ENERGY, 2022, 307
  • [23] Amorphous Anode Materials for Fast-charging Lithium-ion Batteries
    Vishwanathan, Savithri
    Pandey, Harshit
    Ramakrishna Matte, H. S. S.
    CHEMISTRY-A EUROPEAN JOURNAL, 2024, 30 (22)
  • [24] Research progress on electrolytes for fast-charging lithium-ion batteries
    Zhang, Dan
    Li, Le
    Zhang, Weizhuo
    Cao, Minghui
    Qiu, Hengwei
    Ji, Xiaohui
    CHINESE CHEMICAL LETTERS, 2023, 34 (01)
  • [25] Porous current collector for fast-charging lithium-ion batteries
    Cui, Yi
    Ye, Yusheng
    NATURE ENERGY, 2024, 9 (06): : 639 - 640
  • [26] A Review on Electrode Materials of Fast-Charging Lithium-Ion batteries
    Zhang, Zhen
    Zhao, Decheng
    Xu, Yuanyuan
    Liu, Shupei
    Xu, Xiangyu
    Zhou, Jian
    Gao, Fei
    Tang, Hao
    Wang, Zhoulu
    Wu, Yutong
    Liu, Xiang
    Zhang, Yi
    CHEMICAL RECORD, 2022, 22 (10):
  • [27] Challenges and opportunities toward fast-charging of lithium-ion batteries
    Xie, Wenlong
    Liu, Xinhua
    He, Rong
    Li, Yalun
    Gao, Xinlei
    Li, Xinghu
    Peng, Zhaoxia
    Feng, Suwei
    Feng, Xuning
    Yang, Shichun
    JOURNAL OF ENERGY STORAGE, 2020, 32
  • [28] Fast-Charging Strategies for Lithium-Ion Batteries: Advances and Perspectives
    Zhao, Jingteng
    Song, Congying
    Li, Guoxing
    CHEMPLUSCHEM, 2022, 87 (07):
  • [29] Viologen as an Electrolyte Additive for Extreme Fast Charging of Lithium-Ion Batteries
    Kathiresan, Murugavel
    Lakshmi, Abishek Kumar
    Angulakshmi, Natarajan
    Garcia-Ballesteros, Sara
    Bella, Federico
    Stephan, A. Manuel
    BATTERY ENERGY, 2025,
  • [30] Asymmetric Temperature Modulation for Extreme Fast Charging of Lithium-Ion Batteries
    Yang, Xiao-Guang
    Liu, Teng
    Gao, Yue
    Ge, Shanhai
    Leng, Yongjun
    Wang, Donghai
    Wang, Chao-Yang
    JOULE, 2019, 3 (12) : 3002 - 3019