Numerical study on flow and pressure drop characteristics of a novel type asymmetric wall-flow diesel particulate filter

被引:32
|
作者
Xiao, Ge [1 ]
Li, Bo [1 ]
Tian, Hua [1 ]
Leng, Xianyin [2 ]
Long, Wuqiang [1 ]
机构
[1] Dalian Univ Technol, Sch Energy & Power Engn, Dalian 116024, Peoples R China
[2] Jiangsu Univ, Inst Energy Res, Zhenjiang 212013, Jiangsu, Peoples R China
关键词
Diesel particulate filter; Asymmetric; Flow; Pressure drop; SOOT DEPOSITION; IMPACT; REGENERATION; COMBUSTION; MORPHOLOGY; SIMULATION; MODE;
D O I
10.1016/j.fuel.2020.117148
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In order to reduce the pressure drop and regeneration cost of diesel particulate filters (DPFs), and improve the power and economic performance of the diesel engines, a novel type of asymmetric channel wall-flow filter was proposed, including the regular hexagonal and triangular channels, as well as the rectangular channels. A one-dimensional mathematical model was built to study the flow characteristics, especially pressure drop performance, for this type of particulate filter, as well as a square symmetric and a square asymmetric channel filter for comparison. The effects of exhaust gas flow rate, cell density, wall thickness, and aspect ratio were numerically accessed. The results show that the novel asymmetric channel filter can effectively reduce the lifetime pressure drop by increasing the utilization ratio of the filtration wall and the filtration area. Specially, with the novel asymmetric channel structure, the wall pressure drop is considerably reduced owing to a lower mean wall penetration velocity. Furthermore, the depth layer and soot layer pressure drops of the novel type filter are much lower than those of the square symmetric channel filter owing to the smaller penetration velocity and thinner thickness of the soot layer, nearly the same as those of the square asymmetric channel filter. Additionally, the filter with a smaller aspect ratio can slightly reduce the pressure drop, so it can be practically applied if the distribution of the inlet gas is uniform. The novel asymmetric channel filter can meet the current and future demand for miniaturization and light-weighting of particulate fillers, and has excellent market adaptability.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] A finite-volume-based two-dimensional wall-flow diesel particulate filter regeneration model
    Law, M. C.
    Clarke, A.
    Garner, C. P.
    Williams, A. M.
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART D-JOURNAL OF AUTOMOBILE ENGINEERING, 2008, 222 (D5) : 829 - 857
  • [32] Packed bed of spherical particles approach for pressure drop prediction in wall-flow DPFs (diesel particulate filters) under soot loading conditions
    Ramon Serrano, Jose
    Jose Arnau, Francisco
    Piqueras, Pedro
    Garcia-Afonso, Oscar
    ENERGY, 2013, 58 : 644 - 654
  • [33] Experimental-theoretical methodology for determination of inertial pressure drop distribution and pore structure properties in wall-flow diesel particulate filters (DPFs)
    Payri, F.
    Broatch, A.
    Serrano, J. R.
    Piqueras, P.
    ENERGY, 2011, 36 (12) : 6731 - 6744
  • [34] Prediction Capabilities of a One-dimensional Wall-flow Particulate Filter Model
    Impiombato, Andrea Natale
    Biserni, Cesare
    Milani, Massimo
    Montorsi, Luca
    JOURNAL OF APPLIED AND COMPUTATIONAL MECHANICS, 2022, 8 (01): : 245 - 259
  • [36] Lattice Boltzmann simulations for wall-flow dynamics in porous ceramic diesel particulate filters
    Lee, Da Young
    Lee, Gi Wook
    Yoon, Kyu
    Chun, Byoungjin
    Jung, Hyun Wook
    APPLIED SURFACE SCIENCE, 2018, 429 : 72 - 80
  • [37] Effect analysis on the flow uniformity and pressure drop characteristics of the rotary diesel particulate filter for heavy-duty truck
    Xu, Wanrong
    Kou, Chuanfu
    Jiaqiang, E.
    Feng, Changling
    Tan, Yan
    ENERGY, 2024, 288
  • [38] Filtration Efficiency and Pressure Drop Performance of Ceramic Partial Wall Flow Diesel Particulate Filters
    Basu, Sumit
    Henrichsen, Matthew
    Tandon, Pushkar
    He, Suhao
    Heibel, Achim
    SAE INTERNATIONAL JOURNAL OF FUELS AND LUBRICANTS, 2013, 6 (03) : 877 - 893
  • [39] Pressure drop characteristics of irregular hexagonal channel diesel particulate filter
    Li X.
    Cheng J.
    Yue G.
    Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2020, 36 (03): : 63 - 70
  • [40] Analytic Solution for the Flow Distribution and Pressure Drop of Ceramic Partially-Plugged Wall Flow Diesel Particulate Filters
    Basu, Sumit
    Currier, Neal
    SAE INTERNATIONAL JOURNAL OF ENGINES, 2015, 8 (04) : 1478 - 1491