New transform iterative method for solving some Klein-Gordon equations

被引:42
|
作者
Alderremy, Aisha Abdullah [1 ]
Elzaki, Tarig M. [2 ]
Chamekh, Mourad [2 ,3 ]
机构
[1] King Khalid Univ, Math Dept, Abha, Saudi Arabia
[2] AlKamel Univ Jeddah, Coll Arts & Sci, Math Dept, Jeddah, Saudi Arabia
[3] Univ Tunis El Manar, Natl Engn Sch Tunis, LAMSIN, Tunis 1002, Tunisia
关键词
Elzaki transform; Novel iterative method; Klein-Gordon equations;
D O I
10.1016/j.rinp.2018.07.004
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this study, we treat some Klein-Gordon equations (KGEs). We propose a novel iterative approach called the Elzaki iterative method (EIM). This method, which clearly depends on the choice of the initial values, is based on the new iteration method (NIM) and the Elzaki transformation. We show that the EIM could be more valid and reliable approach than the NIM. We propose an analytical approximation of a solution for KGEs for which only a few iterations are necessary to obtain a semi-analytical solution without a loss of precision.
引用
收藏
页码:655 / 659
页数:5
相关论文
共 50 条
  • [41] Decay for nonlinear Klein-Gordon equations
    Vladimir Georgiev
    Sandra Lucente
    Nonlinear Differential Equations and Applications NoDEA, 2004, 11 : 529 - 555
  • [42] Decay for nonlinear Klein-Gordon equations
    Georgiev, V
    Lucente, S
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2004, 11 (04): : 529 - 555
  • [43] Solutions of the perturbed Klein-Gordon equations
    Biswas, A.
    Ebadi, G.
    Fessak, M.
    Johnpillai, A. G.
    Johnson, S.
    Krishnan, E. V.
    Yildirim, A.
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2012, 36 (A4): : 431 - 452
  • [44] KLEIN-GORDON EQUATIONS WITH SCALAR POTENTIALS
    ESCOBAR, CO
    ANAIS DA ACADEMIA BRASILEIRA DE CIENCIAS, 1973, 45 (02): : 205 - 210
  • [45] Dual Klein-Gordon and Dirac equations
    Kirchanov, V. S.
    RUSSIAN PHYSICS JOURNAL, 2012, 55 (06) : 718 - 721
  • [46] Pseudodifferential Equations of Klein-Gordon Type
    Zuniga-Galindo, W. A.
    PSEUDODIFFERENTIAL EQUATIONS OVER NON-ARCHIMEDEAN SPACES, 2016, 2174 : 145 - 165
  • [47] Potentials for the Klein-Gordon and Dirac Equations
    Sharma, Lalit K.
    Luhanga, Pearson V.
    Chimidza, Samuel
    CHIANG MAI JOURNAL OF SCIENCE, 2011, 38 (04): : 514 - 526
  • [48] Scattering for the quadratic Klein-Gordon equations
    Guo, Zihua
    Shen, Jia
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2020, 27 (03):
  • [49] A reliable treatment of homotopy perturbation method for Klein-Gordon equations
    Odibat, Zaid
    Momani, Shaher
    PHYSICS LETTERS A, 2007, 365 (5-6) : 351 - 357
  • [50] A legendre collocation scheme for solving linear and nonlinear hyperbolic klein-gordon equations
    Bhrawy, A.H.
    El-Soubhy, S.I.
    Journal of Computational and Theoretical Nanoscience, 2015, 12 (10) : 3583 - 3590