Surface Defect Detection of High Precision Cylindrical Metal Parts Based on Machine Vision

被引:2
|
作者
Jiang, YuJie [1 ]
Li, Chen [2 ]
Zhang, Xu [1 ]
Wang, JingWen [1 ,2 ]
Liu, ChuZhuang [1 ,2 ]
机构
[1] Shanghai Univ, Sch Mechatron Engn & Automat, Shanghai, Peoples R China
[2] Haiphong Univ Sci & Technol, Sch Mech Sci & Engn, Wuhan, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Cylindrical metal parts; Machine vision; Fourier transform; Gradient threshold; Line detection; Edge detection;
D O I
10.1007/978-3-030-89098-8_76
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The surface quality of high precision cylindrical metal parts is an important index to measure its quality. Most of the existing detection methods still use manual visual inspection. Manual detection is inefficient and difficult to ensure the standard of detection. It is difficult to make an effective judgment for the defects in the critical index, and it is more prone to miss detection and misjudgment. In this paper, the seamless steel pipe used for the shock absorber of bike is taken as the main research object, and machine vision is used for its surface defecting. Combined with the characteristics of arc and high reflection on the surface of steel pipe, an image acquisition and processing system composed of linear light source, linear array camera, encoder and rotation system is proposed. Refer to the national standard GB/T9797-2005, the defects mainly include pit, spalling, pitting, speckle, which is determined by Fourier transform, gradient threshold, and line detection by their four different characteristics. Finally, a complete experimental platform with clamping, blowing, detection, and classification functions is built to test. The experimental results show that the stability, accuracy and detection efficiency of the steel pipe detection system based on machine vision is high, which can meet the needs of daily production detection.
引用
收藏
页码:810 / 820
页数:11
相关论文
共 50 条
  • [31] Wafer defect detection method based on machine vision
    Zhao, Chundong
    Chen, Xiaoyan
    Zhang, Dongyang
    Chen, Jianyong
    Zhu, Kuifeng
    Su, Yanjie
    PROCEEDINGS OF THE 2020 INTERNATIONAL CONFERENCE ON ARTIFICIAL LIFE AND ROBOTICS (ICAROB2020), 2020, : 795 - 799
  • [32] State of the Art in Defect Detection Based on Machine Vision
    Zhonghe Ren
    Fengzhou Fang
    Ning Yan
    You Wu
    International Journal of Precision Engineering and Manufacturing-Green Technology, 2022, 9 : 661 - 691
  • [33] MACHINE VISION WELDING DEFECT DETECTION BASED ON FPGA
    Chang, Kuo-Chi
    Chang, Fu-Hsiang
    Wang, Hsiao-Chuan
    Amesimenu, Governor David Kwabena
    2021 16TH INTERNATIONAL MICROSYSTEMS, PACKAGING, ASSEMBLY AND CIRCUITS TECHNOLOGY CONFERENCE (IMPACT), 2021, : 193 - 196
  • [34] State of the Art in Defect Detection Based on Machine Vision
    Ren, Zhonghe
    Fang, Fengzhou
    Yan, Ning
    Wu, You
    INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING-GREEN TECHNOLOGY, 2022, 9 (02) : 661 - 691
  • [35] A Chip Defect Detection System Based on Machine Vision
    Qiao, Xindan
    Chen, Ting
    Zhuang, Wanjing
    Wu, Jinyi
    PROCEEDINGS OF INCOME-VI AND TEPEN 2021: PERFORMANCE ENGINEERING AND MAINTENANCE ENGINEERING, 2023, 117 : 555 - 568
  • [36] Surface Defect Detection Method for Welding Robot Workpiece Based on Machine Vision Technology
    Shi, Yun
    Zhu, Yan-yan
    Wang, Jun-qi
    MANUFACTURING TECHNOLOGY, 2023, 23 (05): : 691 - 699
  • [37] Track Surface Defect Detection Method Based on Machine Vision and Convolutional Neural Network
    Yao, Zongwei
    Yang, Hongfei
    Hu, Jiyong
    Huang, Qiuping
    Wang, Zhen
    Bi, Qiushi
    Tiedao Xuebao/Journal of the China Railway Society, 2021, 43 (04): : 101 - 107
  • [38] Automatic surface defect detection for mobile phone screen glass based on machine vision
    Jian, Chuanxia
    Gao, Jian
    Ao, Yinhui
    APPLIED SOFT COMPUTING, 2017, 52 : 348 - 358
  • [39] Research on the Application of Steel Plate Surface Defect Detection System Based on Machine Vision
    Liu, Xianfeng
    PROCEEDINGS OF THE 2016 2ND INTERNATIONAL CONFERENCE ON MATERIALS ENGINEERING AND INFORMATION TECHNOLOGY APPLICATIONS (MEITA 2016), 2017, 107 : 244 - 248
  • [40] Automated Machine Learning System for Defect Detection on Cylindrical Metal Surfaces
    Huang, Yi-Cheng
    Hung, Kuo-Chun
    Lin, Jun-Chang
    SENSORS, 2022, 22 (24)