Fluid inclusion and stable isotope constraints (C, O, H) on the Dagbasi Fe-Cu-Zn skarn mineralization (Trabzon, NE Turkey)

被引:12
|
作者
Demir, Yilmaz [1 ]
Disli, Ali [1 ]
机构
[1] Recep Tayyip Erdogan Univ, Dept Geol Engn, TR-53100 Rize, Turkey
关键词
Dagbasi Fe-Cu-Zn skarn; Skarn deposits; Fluid inclusion; Stable isotopes; Trabzon; NE Turkey; EASTERN PONTIDES; HYDROTHERMAL ALTERATION; PLATFORM CARBONATES; WESTERN ANATOLIA; HYDROGEN ISOTOPE; GUMUSHANE AREA; IGNEOUS ROCKS; GOLD DEPOSIT; PLUTON; GEOCHEMISTRY;
D O I
10.1016/j.oregeorev.2019.103235
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
The Dagbasi Fe-Cu-Zn skarn mineralization developed along the contact between the block and lens shaped limestones of the Lower Cretaceous Berdiga Formation and the Upper Cretaceous Dagbasi Granitoid. The exoskam-type mineralization is characterized by prograde stage garnet and pyroxene, while the retrograde stage is characterized by epidote, tremolite, actinolite, and chlorite. Quartz and calcites were observed in both stages of the skarn development. The ore minerals mainly consist of magnetite and hematite, with a lesser amount of pyrrhotite, pyrite, chalcopyrite, sphalerite, and minor galena. The homogenization temperatures (Th) and salinity values of the prograde stage halite-bearing fluid inclusions are in the range of 412-514 degrees C and 48.8-61.8 wt% NaCl equ., respectively. The second stage liquid- and vapor-rich fluid inclusion assemblage reveals that boiling at temperatures of 353-458 degrees C took place after the formation of halite-bearing fluid inclusions. Final stage liquid-rich fluid inclusions were characterized by low Th (160 and 327 degrees C) and salinity values (0.5 and 6.2 wt% NaCl equ.). The decreasing salinity trend of the fluid inclusions versus Th indicated that meteoric water was involved in the hydrothermal solutions. Eutectic temperatures (Te) of the prograde stage fluid inclusions were found to be CaCl2 dominated, while retrograde stage inclusions contained different salt combinations rather than a specific salt type. The minimum trapping pressures of the early stage brine fluid inclusions were calculated to be between 710 and 884 bar, while later stage inclusions had much lower trapping pressures between similar to 195 and 445 bar. The delta O-18 isotopes of prograde stage quartz, garnet, and pyroxenes are close to the composition of the hydrothermal solutions of magmatic sources. Moreover, retrograde stage quartz, epidote, tremolite-actinolite, and calcite minerals and their equilibrated solutions were found to be highly depleted by delta O-18 isotopes. Therefore, the fluid inclusion and stable isotope constraints suggest that the hydrothermal solutions of magmatic origin were responsible for the prograde skarn stage, while a mixture of magmatic and meteoric solutions were responsible for the ore formation in a shallow skarn environment.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] Fluid inclusion and H-O isotope evidence for immiscibility during mineralization of the Yinan Au-Cu-Fe deposit, Shandong, China
    Zhang, Y. M.
    Gu, X. X.
    Liu, L.
    Dong, S. Y.
    Li, K.
    Li, B. H.
    Lv, P. R.
    JOURNAL OF ASIAN EARTH SCIENCES, 2011, 42 (1-2) : 83 - 96
  • [22] PB-ZN MINERALIZATION ASSOCIATED WITH DIAPIRISM - FLUID INCLUSION AND STABLE ISOTOPE (H, C, O) EVIDENCE FOR THE ORIGIN AND EVOLUTION OF THE FLUIDS AT FEDJ-EL-ADOUM, TUNISIA
    CHAREF, A
    SHEPPARD, SMF
    CHEMICAL GEOLOGY, 1987, 61 (1-4) : 113 - 134
  • [23] Fluid inclusion and sulfur isotope thermometry of the Inkaya (Simav-Kutahya) Cu-Pb-Zn-(Ag) mineralization, NW TURKEY
    Ozen, Yesim
    Arik, Fetullah
    CENTRAL EUROPEAN JOURNAL OF GEOSCIENCES, 2013, 5 (03): : 435 - 449
  • [24] Fluid inclusion and stable isotope (O, H, C, and S) constraints on the genesis of the Serrinha gold deposit, Gurupi Belt, northern Brazil
    Klein, Evandro L.
    Harris, Chris
    Renac, Christophe
    Giret, Andre
    Moura, Candido A. V.
    Fuzikawa, Kazuo
    MINERALIUM DEPOSITA, 2006, 41 (02) : 160 - 178
  • [25] Fluid inclusion and stable isotope (O, H, C, and S) constraints on the genesis of the Serrinha gold deposit, Gurupi Belt, northern Brazil
    Evandro L. Klein
    Chris Harris
    Christophe Renac
    André Giret
    Candido A. V. Moura
    Kazuo Fuzikawa
    Mineralium Deposita, 2006, 41 : 160 - 178
  • [26] Stable isotope (C, O, S) systematics of the mercury mineralization at Idrija, Slovenia: constraints on fluid source and alteration processes
    Jošt V. Lavrič
    Jorge E. Spangenberg
    Mineralium Deposita, 2003, 38 : 886 - 899
  • [27] Stable isotope (C, O, S) systematics of the mercury mineralization at Idrija, Slovenia: Constraints on fluid source and alteration processes
    Lavrič, Jošt V.
    Spangenberg, Jorge E.
    Miner. Deposita, 1600, 7 (886-899):
  • [28] Geology, Fluid Inclusion, and H-O-S-Pb Isotope Constraints on the Mineralization of the Xiejiagou Gold Deposit in the Jiaodong Peninsula
    Chai, Peng
    Hou, Zeng-qian
    Zhang, Hong-rui
    Dong, Lei-lei
    GEOFLUIDS, 2019,
  • [29] Stable isotope (C, O, S) systematics of the mercury mineralization at Idrija, Slovenia: constraints on fluid source and alteration processes
    Lavric, JV
    Spangenberg, JE
    MINERALIUM DEPOSITA, 2003, 38 (07) : 886 - 899
  • [30] Geology, mineralization, stable isotope geochemistry, and fluid inclusion characteristics of the Novogodnee-Monto oxidized Au-(Cu) skarn and porphyry deposit, Polar Ural, Russia
    Soloviev, Serguei G.
    Kryazhev, Sergey G.
    Dvurechenskaya, Svetlana S.
    MINERALIUM DEPOSITA, 2013, 48 (05) : 603 - 627