Combining classification and regression trees and the neuro-fuzzy inference system for environmental data modeling

被引:4
|
作者
Burrows, WR [1 ]
机构
[1] Atmospher Environm Serv, Meteorol Res Branch, Downsview, ON M3H 5T4, Canada
关键词
D O I
10.1109/NAFIPS.1999.781783
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A procedure is presented for dynamic-statistical modeling of predictands with non-linear predictand-predictor relationships when there are many potential predictors. Classification and Regression Trees (CART) is used for predictor selection and data stratification. CART output is suitable for piecewise-continuous predictands. Using predictors selected by CART, a neuro-fuzzy inference system (NFIS) algorithm produces an output model for continuous predictands. Application to modeling ground-level ozone is discussed.
引用
收藏
页码:695 / 699
页数:5
相关论文
共 50 条
  • [41] Automatic Classification of Antepartum Cardiotocography Using Fuzzy Clustering and Adaptive Neuro-Fuzzy Inference System
    Fei, Yue
    Huang, Xiaoqian
    Chen, Qinqun
    Chen, Jiamin
    Li, Li
    Hong, Jiaming
    Hao, Zhifeng
    Wei, Hang
    2020 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, 2020, : 1938 - 1942
  • [42] On sampling strategies for small and continuous data with the modeling of genetic programming and adaptive neuro-fuzzy inference system
    Sen, S.
    Sezer, E. A.
    Gokceoglu, C.
    Yagiz, S.
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2012, 23 (06) : 297 - 304
  • [43] Adaptive neuro-fuzzy inference system modeling of MRR and WIWNU in CMP process with sparse experimental data
    Lih, Wen-Chen
    Bukkapatnam, Satish T. S.
    Rao, Prahalad
    Chandrasekharan, Naga
    Komanduri, Ranga
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2008, 5 (01) : 71 - 83
  • [44] Modeling physicochemical characteristics of Apple using adaptive neuro-fuzzy inference system
    Tahani, Behshad
    Beheshti, Babak
    Heidarisoltanabadi, Mohsen
    Hekmatian, Ehsan
    JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION, 2025, 19 (03) : 1777 - 1786
  • [45] Modeling water table depth using adaptive Neuro-Fuzzy Inference System
    Das U.K.
    Roy P.
    Ghose D.K.
    ISH Journal of Hydraulic Engineering, 2019, 25 (03) : 291 - 297
  • [46] Modeling of cotton yarn hairiness using adaptive neuro-fuzzy inference system
    Majumdar, Abhijit
    INDIAN JOURNAL OF FIBRE & TEXTILE RESEARCH, 2010, 35 (02) : 121 - 127
  • [47] Modeling and Simulation of an Adaptive Neuro-Fuzzy Inference System (ANFIS) for Mobile Learning
    Al-Hmouz, Ahmed
    Shen, Jun
    Al-Hmouz, Rami
    Yan, Jun
    IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, 2012, 5 (03): : 226 - 237
  • [48] Regional modeling of the ionosphere using adaptive neuro-fuzzy inference system in Iran
    Feizi, Rasoul
    Voosoghi, Behzad
    Razin, Mir Reza Ghaffari
    ADVANCES IN SPACE RESEARCH, 2020, 65 (11) : 2515 - 2528
  • [49] Using symbolic data in neuro-fuzzy classification
    Nauck, D
    18TH INTERNATIONAL CONFERENCE OF THE NORTH AMERICAN FUZZY INFORMATION PROCESSING SOCIETY - NAFIPS, 1999, : 536 - 540
  • [50] Neuro-fuzzy decision trees
    Bhatt, RB
    Gopal, M
    INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2006, 16 (01) : 63 - 78