Point vortex equilibria on the sphere via Brownian ratchets

被引:8
|
作者
Newton, Paul K. [1 ,2 ]
Sakajo, Takashi [3 ]
机构
[1] Univ So Calif, Dept Aerosp & Mech Engn, Los Angeles, CA 90089 USA
[2] Univ So Calif, Dept Math, Los Angeles, CA 90089 USA
[3] Hokkaido Univ, Dept Math, Sapporo, Hokkaido 0600808, Japan
基金
美国国家科学基金会;
关键词
singular value decomposition; Brownian ratchets; point vortices on a sphere; Shannon entropy; Thomson's problem; ROTATING SPHERE; VORTICES; CHARGES; CONFIGURATIONS; ENERGIES; MOTION;
D O I
10.1098/rspa.2008.0203
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We describe a Brownian ratchet scheme that we use to calculate relative equilibrium configurations of N point vortices of mixed strength on the surface of a unit sphere. We formulate it as a problem in linear algebra, A Gamma = 0, where A is a N(N - 1)/2 X N non-normal configuration matrix obtained by requiring that all inter-vortical distances on the sphere remain constant and Gamma epsilon R-N is the (unit) vector of vortex strengths that must lie in the null space of A. Existence of an equilibrium is expressed by the condition det(A(T)A) = 0, while uniqueness follows if Rank(A) = N - 1. The singular value decomposition of A is used to calculate an optimal basis set for the null space, yielding all values of the vortex strengths for which the configuration is an equilibrium and allowing us to decompose the equilibrium configuration into basis components. To home in on an equilibrium, we allow the point vortices to undergo a random walk on the sphere and, after each step, we compute the smallest singular value of the configuration matrix, keeping the new arrangement only if it decreases. When the smallest singular value drops below a predetermined convergence threshold, the existence criterion is satisfied and an equilibrium configuration is achieved. We then find a basis set for the null space of A, and hence the vortex strengths, by calculating the right singular vectors corresponding to the singular values that are zero. We show a gallery of examples of equilibria with one-dimensional null spaces obtained by this method. Then, using an unbiased ensemble of 1000 relative equilibria for each value N = 4 -> 10, we discuss some general features of the statistically averaged quantities, such as the Shannon entropy (using all of the normalized singular values) and Frobenius norm, centre-of-vorticity vector and Hamiltonian energy.
引用
收藏
页码:437 / 455
页数:19
相关论文
共 50 条
  • [1] Construction of point vortex equilibria via Brownian ratchets
    Newton, Paul K.
    Chamoun, George
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2007, 463 (2082): : 1525 - 1540
  • [2] Construction of point vortex equilibria via Brownian ratchets (vol 463, pg 1525, 2007)
    Newton, Paul K.
    Chamoun, George
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2007, 463 (2088): : 3396 - 3396
  • [3] Point vortex equilibria and optimal packings of circles on a sphere
    Newton, Paul K.
    Sakajo, Takashi
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2011, 467 (2129): : 1468 - 1490
  • [4] Singular continuation of point vortex relative equilibria on the plane and sphere
    O'Neil, Kevin A.
    NONLINEARITY, 2013, 26 (03) : 777 - 804
  • [5] Confined Brownian ratchets
    Malgaretti, Paolo
    Pagonabarraga, Ignacio
    Miguel Rubi, J.
    JOURNAL OF CHEMICAL PHYSICS, 2013, 138 (19):
  • [6] Relative equilibria of point vortices on the sphere
    Lim, C
    Montaldi, J
    Roberts, M
    PHYSICA D-NONLINEAR PHENOMENA, 2001, 148 (1-2) : 97 - 135
  • [7] Stochastic resonance and Brownian ratchets
    Fendrik, AJ
    Romanelli, L
    Perazzo, RPJ
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 359 : 75 - 84
  • [8] Grain boundaries are Brownian ratchets
    Qiu, Caihao
    Punke, Maik
    Tian, Yuan
    Han, Ying
    Wang, Siqi
    Su, Yishi
    Salvalaglio, Marco
    Pan, Xiaoqing
    Srolovitz, David J.
    Han, Jian
    SCIENCE, 2024, 385 (6712) : 980 - 985
  • [9] Brownian ratchets in physics and biology
    Bier, M
    CONTEMPORARY PHYSICS, 1997, 38 (06) : 371 - 379
  • [10] Reversible ratchets as Brownian motors
    Ait-Haddou, R
    Herzog, W
    BIOPHYSICAL JOURNAL, 2001, 80 (01) : 72A - 72A