We study the problem of uniqueness of complete hypersurfaces immersed in a semi-Riemannian warped product whose warping function has convex logarithm. By applying a maximum principle at the infinity due to S. T. Yau and supposing a natural comparison inequality between the mean curvature of the hypersurface and that of the slices of the region where the hypersurface is contained, we obtain rigidity theorems in such ambient spaces. Applications to the hyperbolic and the steady state spaces are given.
机构:
S China Univ Technol, Dept Math, Guangzhou 510641, Guangdong, Peoples R ChinaS China Univ Technol, Dept Math, Guangzhou 510641, Guangdong, Peoples R China
Wang, Yaning
Liu, Ximin
论文数: 0引用数: 0
h-index: 0
机构:
Dalian Univ Technol, Sch Math Sci, Dalian 116024, Liaoning, Peoples R ChinaS China Univ Technol, Dept Math, Guangzhou 510641, Guangdong, Peoples R China
机构:
Henan Normal Univ, Coll Math & Informat Sci, Xinxiang 453007, Henan, Peoples R ChinaHenan Normal Univ, Coll Math & Informat Sci, Xinxiang 453007, Henan, Peoples R China
Wang, Yaning
Liu, Ximin
论文数: 0引用数: 0
h-index: 0
机构:
Dalian Univ Technol, Sch Math Sci, Dalian 116024, Liaoning, Peoples R ChinaHenan Normal Univ, Coll Math & Informat Sci, Xinxiang 453007, Henan, Peoples R China
Liu, Ximin
UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS,
2015,
77
(03):
: 59
-
68