On the Robustness of Machine Learning Based Malware Detection Algorithms

被引:0
|
作者
Hu, Weiwei [1 ]
Tan, Ying
机构
[1] Peking Univ, Sch Elect Engn & Comp Sci, Key Lab Machine Percept MOE, Beijing 100871, Peoples R China
基金
北京市自然科学基金;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
With the rapid popularity of the Internet, a large amount of new malware is produced every day, while the traditional signature based malware detection algorithm is unable to detect such unseen malware. In recent years, many machine learning based algorithms have been proposed to detect new malware, and several of these algorithms are able to achieve quite good detection performance when supplied with plenty of training data. However, most of these algorithms just focus on how to improve the classification performance, while the robustness is not taken into consideration. This paper performs a detailed analysis on the robustness of four well-known machine learning based malware detection approaches, i.e. the DLL and API feature, the string feature, PE-Miner and the byte level N-Gram feature. We proposed two pretense approaches under which malware is able to pretend to be benign and bypass the detection algorithms. Experimental results show that the performances of these detection algorithms decline greatly under the pretense approaches. The lack of robustness makes these algorithms unable to be used in real world applications. In future works of machine learning based malware detection, researchers have to take the problem of robustness seriously.
引用
收藏
页码:1435 / 1441
页数:7
相关论文
共 50 条
  • [31] Towards a Utopia of Dataset Sharing: A Case Study on Machine Learning-based Malware Detection Algorithms
    Chuang, Ping-Jui
    Hsu, Chih-Fan
    Chu, Yung-Tien
    Huang, Szu-Chun
    Huang, Chun-Ying
    ASIA CCS'22: PROCEEDINGS OF THE 2022 ACM ASIA CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY, 2022, : 479 - 493
  • [32] Enhancing Machine Learning Based Malware Detection Model by Reinforcement Learning
    Wu, Cangshuai
    Shi, Jiangyong
    Yang, Yuexiang
    Li, Wenhua
    ICCNS 2018: PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE ON COMMUNICATION AND NETWORK SECURITY, 2018, : 74 - 78
  • [33] Application of Machine Learning in Malware Detection
    Van Quynh, Trinh
    Hien, Vu Thanh
    Nguyen, Vu Thanh
    Bao, Huynh Quoc
    FUTURE DATA AND SECURITY ENGINEERING. BIG DATA, SECURITY AND PRIVACY, SMART CITY AND INDUSTRY 4.0 APPLICATIONS, FDSE 2022, 2022, 1688 : 362 - 374
  • [34] IoT Malware Detection with Machine Learning
    Buttyan, Levente
    Ferenc, Rudolf
    ERCIM NEWS, 2022, (129): : 17 - 19
  • [35] Malware Detection Using Machine Learning
    Kumar, Ajay
    Abhishek, Kumar
    Shah, Kunjal
    Patel, Divy
    Jain, Yash
    Chheda, Harsh
    Nerurka, Pranav
    KNOWLEDGE GRAPHS AND SEMANTIC WEB, KGSWC 2020, 2020, 1232 : 61 - 71
  • [36] Applications of Machine Learning in Malware Detection
    Vaduva, Jan-Alexandru
    Pasca, Vlad-Raul
    Florea, Iulia-Maria
    Rughinis, Razvan
    NEW TECHNOLOGIES AND REDESIGNING LEARNING SPACES, VOL II, 2019, : 286 - 293
  • [37] Compact feature hashing for machine learning based malware detection
    Moon, Damin
    Lee, JaeKoo
    Yoon, MyungKeun
    ICT EXPRESS, 2022, 8 (01): : 124 - 129
  • [38] An Insight into the Machine-Learning-Based Fileless Malware Detection
    Khalid, Osama
    Ullah, Subhan
    Ahmad, Tahir
    Saeed, Saqib
    Alabbad, Dina A.
    Aslam, Mudassar
    Buriro, Attaullah
    Ahmad, Rizwan
    SENSORS, 2023, 23 (02)
  • [39] Study on Android Hybrid Malware Detection Based on Machine Learning
    Kuo, Wen-Chung
    Liu, Tsung-Ping
    Wang, Chun-Cheng
    2019 IEEE 4TH INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATION SYSTEMS (ICCCS 2019), 2019, : 31 - 35
  • [40] A Review of Android Malware Detection Approaches Based on Machine Learning
    Liu, Kaijun
    Xu, Shengwei
    Xu, Guoai
    Zhang, Miao
    Sun, Dawei
    Liu, Haifeng
    IEEE ACCESS, 2020, 8 (08): : 124579 - 124607