Privacy Preserving Data Mining Using Non-Negative Matrix Factorization and Singular Value Decomposition

被引:5
|
作者
Afrin, Afsana [1 ]
Paul, Mahit Kumar [1 ]
Sattar, A. H. M. Sarowar [1 ]
机构
[1] Rajshahi Univ Engn & Technol, Dept Comp Sci & Engn, Rajshahi, Bangladesh
关键词
Privacy; Data mining; Privacy Preserving data mining; Non-Negative Matrix factorization; Singular Value Decomposition;
D O I
10.1109/eict48899.2019.9068846
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the increasing technologies, people share information time to time from different places. The rapid growing improved technologies and improved data mining algorithms make it easy for adversary to disclose sensitive information. So there is always a second thought while individuals share their personal information. That's why privacy protection is an important consideration at every stage of data mining process. Privacy Preserving Data Mining (PPDM) maintains data utility and protects privacy at the same time. In this paper, real world datasets are perturbed by using combined Non-Negative Matrix Factorization (NMF) and Singular Value Decomposition (SVD) method. The utility of perturbed datasets is analyzed with respect to query accuracy. The result of query accuracy implies that the combined method needs to be improved or more efficient methods need to be introduced.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Non-negative matrix factorization on kernels
    Zhang, Daoqiang
    Zhou, Zhi-Hua
    Chen, Songcan
    PRICAI 2006: TRENDS IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2006, 4099 : 404 - 412
  • [42] Non-negative Matrix Factorization: A Survey
    Gan, Jiangzhang
    Liu, Tong
    Li, Li
    Zhang, Jilian
    COMPUTER JOURNAL, 2021, 64 (07): : 1080 - 1092
  • [43] Collaborative Non-negative Matrix Factorization
    Benlamine, Kaoutar
    Grozavu, Nistor
    Bennani, Younes
    Matei, Basarab
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2019: TEXT AND TIME SERIES, PT IV, 2019, 11730 : 655 - 666
  • [44] INFINITE NON-NEGATIVE MATRIX FACTORIZATION
    Schmidt, Mikkel N.
    Morup, Morten
    18TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO-2010), 2010, : 905 - 909
  • [45] Non-negative Matrix Factorization for EEG
    Jahan, Ibrahim Salem
    Snasel, Vaclav
    2013 INTERNATIONAL CONFERENCE ON TECHNOLOGICAL ADVANCES IN ELECTRICAL, ELECTRONICS AND COMPUTER ENGINEERING (TAEECE), 2013, : 183 - 187
  • [46] Algorithms for non-negative matrix factorization
    Lee, DD
    Seung, HS
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 13, 2001, 13 : 556 - 562
  • [47] Non-negative matrix factorization with α-divergence
    Cichocki, Andrzej
    Lee, Hyekyoung
    Kim, Yong-Deok
    Choi, Seungjin
    PATTERN RECOGNITION LETTERS, 2008, 29 (09) : 1433 - 1440
  • [48] Dropout non-negative matrix factorization
    He, Zhicheng
    Liu, Jie
    Liu, Caihua
    Wang, Yuan
    Yin, Airu
    Huang, Yalou
    KNOWLEDGE AND INFORMATION SYSTEMS, 2019, 60 (02) : 781 - 806
  • [49] Non-Negative Matrix Factorization with Constraints
    Liu, Haifeng
    Wu, Zhaohui
    PROCEEDINGS OF THE TWENTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE (AAAI-10), 2010, : 506 - 511
  • [50] Stretched non-negative matrix factorization
    Gu, Ran
    Rakita, Yevgeny
    Lan, Ling
    Thatcher, Zach
    Kamm, Gabrielle E.
    O'Nolan, Daniel
    Mcbride, Brennan
    Wustrow, Allison
    Neilson, James R.
    Chapman, Karena W.
    Du, Qiang
    Billinge, Simon J. L.
    NPJ COMPUTATIONAL MATERIALS, 2024, 10 (01)