Needle Path Planning for Digital Breast Tomosynthesis Biopsy Using a Heterogeneous Model

被引:0
|
作者
Vancamberg, Laurence [1 ]
Sahbani, Anis [2 ]
Muller, Serge [1 ]
Morel, Guillaume [2 ]
机构
[1] GE Healthcare, Buc, France
[2] Pierre & Marie Curie Univ, ISIR CNRS, F-75005 Paris, France
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a novel needle path planning method for biopsy guided by digital breast tomosynthesis (DBT) taking into account breast heterogeneity. First, a multi-resolution optimization approach, guaranteeing that a relevant path is computed, is proposed. Moreover, local breast mechanical parameters required for a heterogeneous finite element simulation, are extracted from the DBT data. The proposed approach computes a 3D local breast glandularity estimation used for Young's modulus determination. This planning method, using a heterogeneous model, reduces the tool positioning error meanly by 75%. In addition, the results show that a breast heterogeneous model has the potential to improve planning accuracy.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Needle-tissue interaction model based needle path planning method
    Lei, Yong
    Du, Shilun
    Li, Murong
    Xu, Tian
    Hu, Yingda
    Wang, Zhen
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2024, 243
  • [22] Breast Cancer Screening Using Tomosynthesis in Combination With Digital Mammography
    Friedewald, Sarah M.
    Rafferty, Elizabeth A.
    Rose, Stephen L.
    Durand, Melissa A.
    Plecha, Donna M.
    Greenberg, Julianne S.
    Hayes, Mary K.
    Copit, Debra S.
    Carlson, Kara L.
    Cink, Thomas M.
    Barke, Lora D.
    Greer, Linda N.
    Miller, Dave P.
    Conant, Emily F.
    JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2014, 311 (24): : 2499 - 2507
  • [23] Deep learning model to predict Ki-67 expression of breast cancer using digital breast tomosynthesis
    Oba, Ken
    Adachi, Maki
    Kobayashi, Tomoya
    Takaya, Eichi
    Shimokawa, Daiki
    Fukuda, Toshinori
    Takahashi, Kengo
    Yagishita, Kazuyo
    Ueda, Takuya
    Tsunoda, Hiroko
    BREAST CANCER, 2024,
  • [24] Evaluation of denoising digital breast tomosynthesis data in both projection and image domains and a study of noise model on digital breast tomosynthesis image domain
    Scarparo, Daniele Cristina
    Pinheiro Salvadeo, Denis Henrique
    Guimaraes Pedronette, Daniel Carlos
    Barufaldi, Bruno
    Arnold Maidment, Andrew Douglas
    JOURNAL OF MEDICAL IMAGING, 2019, 6 (03)
  • [25] Improved digital breast tomosynthesis images using automated ultrasound
    Zhang, Xing
    Yuan, Jie
    Du, Sidan
    Kripfgans, Oliver D.
    Wang, Xueding
    Carson, Paul L.
    Liu, Xiaojun
    MEDICAL PHYSICS, 2014, 41 (06)
  • [26] Breast Tissue Classification in Digital Breast Tomosynthesis Images Using Texture Features
    Kontos, D.
    Bakic, P.
    Maidment, A.
    MEDICAL PHYSICS, 2008, 35 (06)
  • [27] Breast Cancer Screening Using Digital Breast Tomosynthesis Not All Mammography Is Equal
    Bahl, Manisha
    Lehman, Constance D.
    JAMA ONCOLOGY, 2019, 5 (05) : 642 - 643
  • [28] Predicting Malignant Mass in Digital Breast Tomosynthesis Using a Multi-Objective Radiomics Model
    Qin, G.
    Zhou, Z.
    Xu, Y.
    Ma, J.
    Zhang, Q.
    Nguyen, D.
    Wang, J.
    Zhou, L.
    Chen, W.
    Jiang, S.
    MEDICAL PHYSICS, 2018, 45 (06) : E435 - E436
  • [29] Evaluation of Breast Galactography Using Digital Breast Tomosynthesis: A Clinical Exploratory Study
    Tao, Juan
    Liao, Hao
    Liu, Yuan
    Peng, Qingsong
    Zhu, Wenying
    Peng, Shuyi
    Liu, Jie
    Chen, Leqing
    Yang, Fan
    DIAGNOSTICS, 2021, 11 (11)
  • [30] Multiloss strategy for breast cancer subtype classification using digital breast tomosynthesis
    Guo, Wei
    Li, Xiaomin
    Gong, Zhaoxuan
    Zhang, Guodong
    Jiang, Xiran
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2024, 34 (01)