Anti-diagonals of symmetric and skew symmetric matrices with prescribed eigenvalues

被引:1
|
作者
Yan, Wen
Tam, Tin-Yau [1 ]
机构
[1] Auburn Univ, Dept Math & Stat, Auburn, AL 36849 USA
关键词
kth Anti-diagonal; Eigenvalues; Weak majorization; SINGULAR VALUES; ELEMENTS; THEOREMS;
D O I
10.1016/j.laa.2012.08.038
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The complete relationship between the kth anti-diagonals and the eigenvalues of an n x n (k <= n) real symmetric matrix is obtained. When k is even, the relationship is weak majorization. The Hermitian case is also studied. Similar results are obtained for real and complex skew symmetric matrices. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:1446 / 1453
页数:8
相关论文
共 50 条
  • [21] PFAFFIANS AND SKEW-SYMMETRIC MATRICES
    HEYMANS, P
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1969, 19 : 730 - &
  • [22] SKEW-SYMMETRIC MATRICES AND THE PFAFFIAN
    EGECIOGLU, O
    ARS COMBINATORIA, 1990, 29 : 107 - 116
  • [23] EXCEPTIONAL IDENTITIES FOR SKEW SYMMETRIC MATRICES
    LEHRERILAMED, Y
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (05): : A480 - A480
  • [24] Commutators of skew-symmetric matrices
    Bloch, AM
    Iserles, A
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2005, 15 (03): : 793 - 801
  • [25] CM–fields and skew–symmetric matrices
    Eva Bayer-Fluckiger
    Grégory Berhuy
    Pascale Chuard–Koulmann
    manuscripta mathematica, 2004, 114 : 351 - 359
  • [26] Almost skew-symmetric matrices
    McDonald, JJ
    Psarrakos, PJ
    Tsatsomeros, MJ
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2004, 34 (01) : 269 - 288
  • [27] A spectral identity for Skew symmetric matrices
    Jacquet, H
    Lapid, E
    Rallis, S
    CONTRIBUTIONS TO AUTOMORPHIC FORMS, GEOMETRY, AND NUMBER THEORY, 2004, : 421 - 455
  • [28] On the concentration of eigenvalues of random symmetric matrices
    Noga Alon
    Michael Krivelevich
    Van H. Vu
    Israel Journal of Mathematics, 2002, 131 : 259 - 267
  • [29] Real symmetric matrices with partitioned eigenvalues
    Weinstein, Madeleine
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2022, 633 : 281 - 289
  • [30] THE EIGENVALUES OF RANDOM SYMMETRIC-MATRICES
    FUREDI, Z
    KOMLOS, J
    COMBINATORICA, 1981, 1 (03) : 233 - 241