Quantum funneling in blended multi-band gap core/shell colloidal quantum dot solar cells

被引:8
|
作者
Neo, Darren C. J. [1 ]
Stranks, Samuel D. [2 ]
Eperon, Giles E. [2 ]
Snaith, Henry J. [2 ]
Assender, Hazel E. [1 ]
Watt, Andrew A. R. [1 ]
机构
[1] Univ Oxford, Dept Mat, Oxford OX1 3PH, England
[2] Dept Phys, Clarendon Lab, Oxford OX1 3PU, England
基金
英国工程与自然科学研究理事会;
关键词
PHOTOVOLTAICS; PBS; RECOMBINATION; NANOCRYSTALS; PASSIVATION; GENERATION; TRANSPORT; ABSORBER; SOLIDS; LAYER;
D O I
10.1063/1.4930144
中图分类号
O59 [应用物理学];
学科分类号
摘要
Multi-band gap heterojunction solar cells fabricated from a blend of 1.2 eV and 1.4 eV PbS colloidal quantum dots (CQDs) show poor device performance due to non-radiative recombination. To overcome this, a CdS shell is epitaxially formed around the PbS core using cation exchange. From steady state and transient photoluminescence measurements, we understand the nature of charge transfer between these quantum dots. Photoluminescence decay lifetimes are much longer in the PbS/CdS core/shell blend compared to PbS only, explained by a reduction in non-radiative recombination resulting from CdS surface passivation. PbS/CdS heterojunction devices sustain a higher open-circuit voltage and lower reverse saturation current as compared to PbS-only devices, implying lower recombination rates. Further device performance enhancement is attained by modifying the composition profile of the CQD species in the absorbing layer resulting in a three dimensional quantum cascade structure. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Realistic quantum design of silicon quantum dot intermediate band solar cells
    Hu, Weiguo
    Igarashi, Makoto
    Lee, Ming-Yi
    Li, Yiming
    Samukawa, Seiji
    NANOTECHNOLOGY, 2013, 24 (26)
  • [42] Sensitized solar cells with colloidal PbS-CdS core-shell quantum dots
    Lai, Lai-Hung
    Protesescu, Loredana
    Kovalenko, Maksym V.
    Loi, Maria A.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (02) : 736 - 742
  • [43] Band Gap Energy of Gradient Core-Shell Quantum Dots
    Poulsen, Felipe
    Hansen, Thorsten
    JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (25): : 13655 - 13659
  • [44] Effect of the shell material and confinement type on the conversion efficiency of core/shell quantum dot nanocrystal solar cells
    Sahin, Mehmet
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2018, 30 (20)
  • [45] THIRD GENERATION PHOTOVOLTAICS: MULTIPLE EXCITON GENERATION IN COLLOIDAL QUANTUM DOTS, QUANTUM DOT ARRAYS, AND QUANTUM DOT SOLAR CELLS
    Beard, Matthew C.
    Luther, Joseph M.
    Midgett, Aaron G.
    Semonin, Octavi E.
    Johnson, Justin C.
    Nozik, Arthur J.
    35TH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE, 2010, : 370 - 375
  • [46] Tunneling quantum dot sensors for multi-band infrared and terahertz radiation detection
    Ariyawansa, G.
    Matsik, S. G.
    Perera, A. G. U.
    Su, X. H.
    Bhattacharya, P.
    2007 IEEE SENSORS, VOLS 1-3, 2007, : 503 - 506
  • [47] Advanced Architecture for Colloidal PbS Quantum Dot Solar Cells Exploiting a CdSe Quantum Dot Buffer Layer
    Zhao, Tianshuo
    Goodwin, Earl D.
    Guo, Jiacen
    Wang, Han
    Diroll, Benjamin T.
    Murray, Christopher B.
    Kagan, Cherie R.
    ACS NANO, 2016, 10 (10) : 9267 - 9273
  • [48] Tuning band alignment by surface dipole moments to improve performance of colloidal quantum dot solar cells
    Santra, Pralay K.
    Palmstrom, Axel F.
    Bent, Stacey F.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 247
  • [49] The intrinsic losses of quantum dot intermediate band solar cells
    Arefinia, Zahra
    Asgari, Asghar
    17TH INTERNATIONAL CONFERENCE ON NUMERICAL SIMULATION OF OPTOELECTRONIC DEVICES NUSOD 2017, 2017, : 125 - 126
  • [50] Understanding the operation of quantum dot intermediate band solar cells
    Luque, A.
    Linares, P. G.
    Antolin, E.
    Ramiro, I.
    Farmer, C. D.
    Hernandez, E.
    Tobias, I.
    Stanley, C. R.
    Marti, A.
    JOURNAL OF APPLIED PHYSICS, 2012, 111 (04)