The numerical integration of relative equilibrium solutions.: The nonlinear Schrodinger equation

被引:68
作者
Durán, A [1 ]
Sanz-Serna, JM [1 ]
机构
[1] Univ Valladolid, Dept Matemat Aplicada & Computac, Valladolid, Spain
关键词
D O I
10.1093/imanum/20.2.235
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyse different error propagation mechanisms for conservative and nonconservative time-integrators of nonlinear Schrodinger equations. We use a geometric approach based on interpreting waves as relative equilibria.
引用
收藏
页码:235 / 261
页数:27
相关论文
共 29 条
[1]  
[Anonymous], STATE ART NUMERICAL
[2]  
Arnold V.I., 1989, MATH METHODS CLASSIC, Vsecond
[3]   ACCURATE LONG-TERM INTEGRATION OF DYNAMICAL-SYSTEMS [J].
CALVO, MP ;
HAIRER, E .
APPLIED NUMERICAL MATHEMATICS, 1995, 18 (1-3) :95-105
[4]   Variable step implementation of geometric integrators [J].
Calvo, MP ;
Lopez-Marcos, MA ;
Sanz-Serna, JM .
APPLIED NUMERICAL MATHEMATICS, 1998, 28 (01) :1-16
[5]   THE DEVELOPMENT OF VARIABLE-STEP SYMPLECTIC INTEGRATORS, WITH APPLICATION TO THE 2-BODY PROBLEM [J].
CALVO, MP ;
SANZSERNA, JM .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1993, 14 (04) :936-952
[6]   Error growth in the numerical integration of periodic orbits, with application to Hamiltonian and reversible systems [J].
Cano, B ;
SanzSerna, JM .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1997, 34 (04) :1391-1417
[7]   Error growth in the numerical integration of periodic orbits by multistep methods, with application to reversible systems [J].
Cano, B ;
Sanz-Serna, JM .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1998, 18 (01) :57-75
[8]   Accuracy and conservation properties in numerical integration: The case of the Korteweg de Vries equation [J].
deFrutos, J ;
SanzSerna, JM .
NUMERISCHE MATHEMATIK, 1997, 75 (04) :421-445
[9]   The numerical integration of relative equilibrium solutions. Geometric theory [J].
Duran, A ;
Sanz-Serna, JM .
NONLINEARITY, 1998, 11 (06) :1547-1567
[10]  
DURAN A, 1997, THESIS U VALLADOLID