The numerical integration of relative equilibrium solutions. Geometric theory

被引:20
作者
Duran, A [1 ]
Sanz-Serna, JM [1 ]
机构
[1] Univ Valladolid, Dept Matemat Aplicada & Computac, Valladolid, Spain
关键词
D O I
10.1088/0951-7715/11/6/008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the propagation of errors in the numerical integration of relative equilibria solutions of differential equations with symmetries. In thr Hamiltonian case and for stable equilibria, the error growth is typically quadratic for 'general' schemes and linear for schemes that preserve the invariant quantifies of the problem. Numerical results are presented.
引用
收藏
页码:1547 / 1567
页数:21
相关论文
共 18 条
[1]  
[Anonymous], STATE ART NUMERICAL
[2]  
Arnold V.I., 1989, MATH METHODS CLASSIC, Vsecond
[3]   ACCURATE LONG-TERM INTEGRATION OF DYNAMICAL-SYSTEMS [J].
CALVO, MP ;
HAIRER, E .
APPLIED NUMERICAL MATHEMATICS, 1995, 18 (1-3) :95-105
[4]   THE DEVELOPMENT OF VARIABLE-STEP SYMPLECTIC INTEGRATORS, WITH APPLICATION TO THE 2-BODY PROBLEM [J].
CALVO, MP ;
SANZSERNA, JM .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1993, 14 (04) :936-952
[5]   Error growth in the numerical integration of periodic orbits, with application to Hamiltonian and reversible systems [J].
Cano, B ;
SanzSerna, JM .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1997, 34 (04) :1391-1417
[6]   Error growth in the numerical integration of periodic orbits by multistep methods, with application to reversible systems [J].
Cano, B ;
Sanz-Serna, JM .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1998, 18 (01) :57-75
[7]   Accuracy and conservation properties in numerical integration: The case of the Korteweg de Vries equation [J].
deFrutos, J ;
SanzSerna, JM .
NUMERISCHE MATHEMATIK, 1997, 75 (04) :421-445
[8]  
DURAN A, 1997, THESIS U VALLADOLID
[9]  
DURAN A, 1998, UNPUB NUMERICAL INTE
[10]   THE RATE OF ERROR GROWTH IN HAMILTONIAN-CONSERVING INTEGRATORS [J].
ESTEP, DJ ;
STUART, AM .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1995, 46 (03) :407-418