A parameter identification problem for the mathematical model of HIV dynamics

被引:0
|
作者
Kabanikhin, Sergey [1 ]
Krivorotko, Olga [1 ]
Yermolenko, Darya [2 ]
机构
[1] RAS, Inst Computat Math & Math Geophys, SB, Novosibirsk, Russia
[2] Novosibirsk State Univ, Novosibirsk, Russia
关键词
mathematical model of HIV dynamics; inverse problem; genetic algorithm; least square method;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, a problem of specifying HIV-infection parameters and immune response using additional measurements of the concentrations of the T-lymphocytes, the free virus, and the immune effectors at fixed times for a mathematical model of HIV dynamics is investigated numerically. The problem of specifying the parameters of the mathematical model (an inverse problem) is reduced to a problem of minimizing an objective function describing the deviation of the simulation results from the experimental data. A genetic algorithm for solving the least squares function minimization problem method is implemented and investigated. The results of a numerical solution of the inverse problem are analyzed.
引用
收藏
页码:82 / 86
页数:5
相关论文
共 50 条
  • [41] Parameter identification of a mathematical model of induction motors via least square technics
    Alonge, F
    D'Ippolito, F
    La Barbera, S
    Raimondi, FM
    PROCEEDINGS OF THE 1998 IEEE INTERNATIONAL CONFERENCE ON CONTROL APPLICATIONS, VOLS 1 AND 2, 1996, : 491 - 496
  • [42] Parameter identification of a ship mathematical model based on the modified grey wolf algorithm
    Meng, Yao
    Zhang, Xiufeng
    Chen, Yunong
    Harbin Gongcheng Daxue Xuebao/Journal of Harbin Engineering University, 2023, 44 (08): : 1304 - 1312
  • [43] Sensitivity analysis of a nonlinear lumped parameter model of HIV infection dynamics
    D. M. Bortz
    P. W. Nelson
    Bulletin of Mathematical Biology, 2004, 66 : 1009 - 1026
  • [44] Sensitivity analysis of a nonlinear lumped parameter model of HIV infection dynamics
    Bortz, DM
    Nelson, PW
    BULLETIN OF MATHEMATICAL BIOLOGY, 2004, 66 (05) : 1009 - 1026
  • [45] A coefficient identification problem for a mathematical model related to ductal carcinoma in situ
    Wu, Bin
    Chen, Qun
    Yu, Jun
    Wang, Zewen
    STUDIES IN APPLIED MATHEMATICS, 2019, 143 (04) : 356 - 372
  • [46] The problem of coefficients identification in the mathematical model of the ion implantation diffusion process
    Shatalov, YS
    Lukashuk, SY
    Rikachev, YY
    INVERSE PROBLEMS IN ENGINEERING, 1999, 7 (03): : 267 - 290
  • [47] A source identification problem related to mathematical model of laser surface heating
    Otelbaev, Muhtarbay
    Hasanov, Alemdar
    Akpayev, Bakytzhan
    APPLIED MATHEMATICS LETTERS, 2012, 25 (10) : 1480 - 1485
  • [48] Inverse Problem for a Mathematical Model of Sorption Dynamics with a Variable Kinetic Coefficient
    A. V. Denisov
    Dongqin Zhu
    Moscow University Computational Mathematics and Cybernetics, 2022, 46 (4) : 174 - 182
  • [49] Existence of Two Solutions of the Inverse Problem for a Mathematical Model of Sorption Dynamics
    Denisov, A. M.
    Dongqin, Zhu
    DIFFERENTIAL EQUATIONS, 2023, 59 (10) : 1435 - 1439
  • [50] Existence of Two Solutions of the Inverse Problem for a Mathematical Model of Sorption Dynamics
    A. M. Denisov
    Differential Equations, 2023, 59 : 1435 - 1439