Thermoelectric properties of anisotropic semiconductors

被引:43
|
作者
Bies, WE [1 ]
Radtke, RJ
Ehrenreich, H
Runge, E
机构
[1] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[2] Harvard Univ, Div Engn & Appl Sci, Cambridge, MA 02138 USA
[3] Humboldt Univ, Inst Phys, AG Halbleitertheorie, D-10117 Berlin, Germany
来源
PHYSICAL REVIEW B | 2002年 / 65卷 / 08期
关键词
D O I
10.1103/PhysRevB.65.085208
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
General effective transport coefficients and the thermoelectric figure of merit ZT for anisotropic systems are derived. Sizable induced transverse fields on surfaces perpendicular to the current flow are shown to reduce the effective transport coefficients. A microscopic electronic model relevant for multivalleyed materials with parabolic bands is considered in detail. Within the effective mass and relaxation-time approximations but neglecting the lattice thermal conductivity kappa(l), the thermopower and Lorenz number are shown to be independent of the tensorial structure of the transport coefficients and are therefore isotropic. ZT is also isotropic for vanishing lattice thermal conductivity kappa(l). A similar result holds in lower dimensions. For nonvanishing but sufficiently isotropic kappa(l), ZT is ordinarily maximal along the direction of highest electrical conductivity a. More general numerical calculations suggest that maximal ZT occurs along the principal direction with the largest sigma/kappa(l). An explicit bound on ZT is derived. Consideration of the Esaki-Tsu model shows that nonparabolic dispersion in superlattices has little effect on the thermopower at the carrier concentrations which maximize ZT. However, strong anisotropies develop when the chemical potential exceeds the miniband width.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 50 条
  • [1] Model of the Thermoelectric Properties of Anisotropic Organic Semiconductors
    Ihnatsenka, S.
    ACS PHYSICAL CHEMISTRY AU, 2021, 2 (02): : 118 - 124
  • [2] ON THEORY OF ANISOTROPIC THERMOELECTRIC POWER IN SEMICONDUCTORS
    SAMOILOVICH, AG
    NITSOVICH, MV
    NITSOVICH, VM
    PHYSICA STATUS SOLIDI, 1966, 16 (02): : 459 - +
  • [3] THERMOELECTRIC PROPERTIES OF SEMICONDUCTORS
    PAGNIA, H
    BERICHTE DER BUNSEN-GESELLSCHAFT FUR PHYSIKALISCHE CHEMIE, 1964, 68 (8-9): : 903 - &
  • [4] THERMOELECTRIC AND THERMAL PROPERTIES OF SEMICONDUCTORS
    JOFFE, A
    JOURNAL DE PHYSIQUE ET LE RADIUM, 1957, 18 (04): : 209 - 213
  • [5] ON THE PROBLEM OF MEASURING THERMOELECTRIC PROPERTIES OF SEMICONDUCTORS
    KAGANOV, MA
    LISKER, IS
    MUSHKIN, IG
    SOVIET PHYSICS-SOLID STATE, 1959, 1 (06): : 905 - 907
  • [6] Manipulating the thermoelectric properties of polymer semiconductors
    Ogle, Jonathan
    Teferi, Mandefro
    Boehme, Christoph
    Whittaker, Luisa
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255
  • [7] KUTASOV VA - THERMOELECTRIC PROPERTIES OF SEMICONDUCTORS
    WINTENBE.M
    ACTA CRYSTALLOGRAPHICA, 1966, 21 : 292 - &
  • [8] Optical properties of anisotropic porous semiconductors
    Ruda, H. E.
    Shik, A.
    APPLIED PHYSICS LETTERS, 2011, 99 (21)
  • [9] PHOTOVOLTAIC PROPERTIES OF ANISOTROPIC RELAXATION SEMICONDUCTORS
    SCHETZINA, JF
    PHYSICAL REVIEW B, 1975, 12 (08): : 3339 - 3352
  • [10] Anisotropic thermoelectric properties of CeRhAs with superstructures
    Takabatake, T
    Suemitsu, T
    Sasakawa, T
    Kitagawa, J
    Umeo, K
    Nakajima, M
    Iwasa, K
    Kohgi, M
    ACTA PHYSICA POLONICA B, 2003, 34 (02): : 1303 - 1308